当前位置: 首页 > news >正文

K8s(健康检查+滚动更新+优雅停机+弹性伸缩+Prometheus监控+配置分离)

前言

快速配置请直接跳转至汇总配置

K8s + SpringBoot实现零宕机发布:健康检查+滚动更新+优雅停机+弹性伸缩+Prometheus监控+配置分离(镜像复用)
配置
健康检查

健康检查类型:就绪探针(readiness)+ 存活探针(liveness)探针类型:exec(进入容器执行脚本)、tcpSocket(探测端口)、httpGet(调用接口)

业务层面

项目依赖 pom.xml
 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId></dependency>

定义访问端口、路径及权限 application.yaml

management:server:port: 50000                         # 启用独立运维端口endpoint:                             # 开启health端点health:probes:enabled: trueendpoints:web:exposure:base-path: /actuator            # 指定上下文路径,启用相应端点include: health

将暴露/actuator/health/readiness和/actuator/health/liveness两个接口,访问方式如下:

http://127.0.0.1:50000/actuator/health/readiness
http://127.0.0.1:50000/actuator/health/liveness

运维层面

k8s部署模版deployment.yaml
apiVersion: apps/v1
kind: Deployment
spec:template:spec:containers:- name: {APP_NAME}image: {IMAGE_URL}imagePullPolicy: Alwaysports:- containerPort: {APP_PORT}- name: management-portcontainerPort: 50000         # 应用管理端口readinessProbe:                # 就绪探针httpGet:path: /actuator/health/readinessport: management-portinitialDelaySeconds: 30      # 延迟加载时间periodSeconds: 10            # 重试时间间隔timeoutSeconds: 1            # 超时时间设置successThreshold: 1          # 健康阈值failureThreshold: 6          # 不健康阈值livenessProbe:                 # 存活探针httpGet:path: /actuator/health/livenessport: management-portinitialDelaySeconds: 30      # 延迟加载时间periodSeconds: 10            # 重试时间间隔timeoutSeconds: 1            # 超时时间设置successThreshold: 1          # 健康阈值failureThreshold: 6          # 不健康阈值

滚动更新

k8s资源调度之滚动更新策略,若要实现零宕机发布,需支持健康检查

apiVersion: apps/v1
kind: Deployment
metadata:name: {APP_NAME}labels:app: {APP_NAME}
spec:selector:matchLabels:app: {APP_NAME}replicas: {REPLICAS}				# Pod副本数strategy:type: RollingUpdate				# 滚动更新策略rollingUpdate:maxSurge: 1                   # 升级过程中最多可以比原先设置的副本数多出的数量maxUnavailable: 1             # 升级过程中最多有多少个POD处于无法提供服务的状态

优雅停机

在K8s中,当我们实现滚动升级之前,务必要实现应用级别的优雅停机。否则滚动升级时,还是会影响到业务。使应用关闭线程、释放连接资源后再停止服务
业务层面

项目依赖 pom.xml
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

定义访问端口、路径及权限 application.yaml

spring:application:name: <xxx>profiles:active: @profileActive@lifecycle:timeout-per-shutdown-phase: 30s     # 停机过程超时时长设置30s,超过30s,直接停机server:port: 8080shutdown: graceful                    # 默认为IMMEDIATE,表示立即关机;GRACEFUL表示优雅关机management:server:port: 50000                         # 启用独立运维端口endpoint:                             # 开启shutdown和health端点shutdown:enabled: truehealth:probes:enabled: trueendpoints:web:exposure:base-path: /actuator            # 指定上下文路径,启用相应端点include: health,shutdown

将暴露/actuator/shutdown接口,调用方式如下:

curl -X POST 127.0.0.1:50000/actuator/shutdown

运维层面

确保dockerfile模版集成curl工具,否则无法使用curl命令

FROM openjdk:8-jdk-alpine
#构建参数
ARG JAR_FILE
ARG WORK_PATH="/app"
ARG EXPOSE_PORT=8080#环境变量
ENV JAVA_OPTS=""\JAR_FILE=${JAR_FILE}#设置时区
RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo 'Asia/Shanghai' >/etc/timezone
RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.ustc.edu.cn/g' /etc/apk/repositories  \&& apk add --no-cache curl
#将maven目录的jar包拷贝到docker中,并命名为for_docker.jar
COPY target/$JAR_FILE $WORK_PATH/#设置工作目录
WORKDIR $WORK_PATH

指定于外界交互的端口

EXPOSE $EXPOSE_PORT

配置容器,使其可执行化

ENTRYPOINT exec java $JAVA_OPTS -jar $JAR_FILE

k8s部署模版deployment.yaml

注:经验证,java项目可省略结束回调钩子的配置

此外,若需使用回调钩子,需保证镜像中包含curl工具,且需注意应用管理端口(50000)不能暴露到公网

apiVersion: apps/v1
kind: Deployment
spec:template:spec:containers:- name: {APP_NAME}image: {IMAGE_URL}imagePullPolicy: Alwaysports:- containerPort: {APP_PORT}- containerPort: 50000lifecycle:preStop: 						# 结束回调钩子exec:command: ["curl", "-XPOST", "127.0.0.1:50000/actuator/shutdown"]

弹性伸缩

为pod设置资源限制后,创建HPA

apiVersion: apps/v1
kind: Deployment
metadata:name: {APP_NAME}labels:app: {APP_NAME}
spec:template:spec:containers:- name: {APP_NAME}image: {IMAGE_URL}imagePullPolicy: Alwaysresources:                     # 容器资源管理limits:                      # 资源限制(监控使用情况)cpu: 0.5memory: 1Girequests:                    # 最小可用资源(灵活调度)cpu: 0.15memory: 300Mi
kind: HorizontalPodAutoscaler            # 弹性伸缩控制器
apiVersion: autoscaling/v2beta2
metadata:name: {APP_NAME}
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: {APP_NAME}minReplicas: {REPLICAS}                # 缩放范围maxReplicas: 6metrics:- type: Resourceresource:name: cpu                        # 指定资源指标target:type: UtilizationaverageUtilization: 50

Prometheus集成
业务层面

项目依赖 pom.xml<!-- 引入Spring boot的监控机制-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency><groupId>io.micrometer</groupId><artifactId>micrometer-registry-prometheus</artifactId>
</dependency>

定义访问端口、路径及权限 application.yaml

management:server:port: 50000                         # 启用独立运维端口metrics:tags:application: ${spring.application.name}endpoints:web:exposure:base-path: /actuator            # 指定上下文路径,启

用相应端点
include: metrics,prometheus

将暴露/actuator/metric和/actuator/prometheus接口,访问方式如下:

http://127.0.0.1:50000/actuator/metric
http://127.0.0.1:50000/actuator/prometheus

运维层面 deployment.yaml

apiVersion: apps/v1
kind: Deployment
spec:template:metadata:annotations:prometheus:io/port: "50000"prometheus.io/path: /actuator/prometheus  # 在流水线中赋值prometheus.io/scrape: "true"              # 基于pod的服务发现

配置分离

方案:通过configmap挂载外部配置文件,并指定激活环境运行

作用:配置分离,避免敏感信息泄露;镜像复用,提高交付效率

通过文件生成configmap

通过dry-run的方式生成yaml文件

kubectl create cm -n <APP_NAME> --from-file=application-test.yaml --dry-run=1 -oyaml > configmap.yaml

更新

kubectl apply -f configmap.yaml

挂载configmap并指定激活环境

apiVersion: apps/v1
kind: Deployment
metadata:name: {APP_NAME}labels:app: {APP_NAME}
spec:template:spec:containers:- name: {APP_NAME}image: {IMAGE_URL}imagePullPolicy: Alwaysenv:- name: SPRING_PROFILES_ACTIVE   # 指定激活环境value: testvolumeMounts:                      # 挂载configmap- name: confmountPath: "/app/config"         # 与Dockerfile中工作目录一致readOnly: truevolumes:- name: confconfigMap:name: {APP_NAME}

汇总配置

业务层面

项目依赖 pom.xml<!-- 引入Spring boot的监控机制-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency><groupId>io.micrometer</groupId><artifactId>micrometer-registry-prometheus</artifactId>
</dependency>

定义访问端口、路径及权限 application.yaml

spring:application:name: project-sampleprofiles:active: @profileActive@lifecycle:timeout-per-shutdown-phase: 30s     # 停机过程超时时长设置30s,超过30s,直接停机server:port: 8080shutdown: graceful                    # 默认为IMMEDIATE,表示立即关机;GRACEFUL表示优雅关机management:server:port: 50000                         # 启用独立运维端口metrics:tags:application: ${spring.application.name}endpoint:                             # 开启shutdown和health端点shutdown:enabled: truehealth:probes:enabled: trueendpoints:web:exposure:base-path: /actuator            # 指定上下文路径,启用相应端点include: health,shutdown,metrics,prometheus

运维层面

确保dockerfile模版集成curl工具,否则无法使用curl命令

FROM openjdk:8-jdk-alpine
#构建参数
ARG JAR_FILE
ARG WORK_PATH="/app"
ARG EXPOSE_PORT=8080#环境变量
ENV JAVA_OPTS=""\JAR_FILE=${JAR_FILE}#设置时区
RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo 'Asia/Shanghai' >/etc/timezone
RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.ustc.edu.cn/g' /etc/apk/repositories  \&& apk add --no-cache curl
#将maven目录的jar包拷贝到docker中,并命名为for_docker.jar
COPY target/$JAR_FILE $WORK_PATH/#设置工作目录
WORKDIR $WORK_PATH# 指定于外界交互的端口
EXPOSE $EXPOSE_PORT
# 配置容器,使其可执行化
ENTRYPOINT exec java $JAVA_OPTS -jar $JAR_FILE

k8s部署模版deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:name: {APP_NAME}labels:app: {APP_NAME}
spec:selector:matchLabels:app: {APP_NAME}replicas: {REPLICAS}                            # Pod副本数strategy:type: RollingUpdate                           # 滚动更新策略rollingUpdate:maxSurge: 1maxUnavailable: 0template:metadata:name: {APP_NAME}labels:app: {APP_NAME}annotations:timestamp: {TIMESTAMP}prometheus.io/port: "50000"               # 不能动态赋值prometheus.io/path: /actuator/prometheusprometheus.io/scrape: "true"              # 基于pod的服务发现spec:affinity:                                   # 设置调度策略,采取多主机/多可用区部署podAntiAffinity:preferredDuringSchedulingIgnoredDuringExecution:- weight: 100podAffinityTerm:labelSelector:matchExpressions:- key: appoperator: Invalues:- {APP_NAME}topologyKey: "kubernetes.io/hostname" # 多可用区为"topology.kubernetes.io/zone"terminationGracePeriodSeconds: 30             # 优雅终止宽限期containers:- name: {APP_NAME}image: {IMAGE_URL}imagePullPolicy: Alwaysports:- containerPort: {APP_PORT}- name: management-portcontainerPort: 50000         # 应用管理端口readinessProbe:                # 就绪探针httpGet:path: /actuator/health/readinessport: management-portinitialDelaySeconds: 30      # 延迟加载时间periodSeconds: 10            # 重试时间间隔timeoutSeconds: 1            # 超时时间设置successThreshold: 1          # 健康阈值failureThreshold: 9          # 不健康阈值livenessProbe:                 # 存活探针httpGet:path: /actuator/health/livenessport: management-portinitialDelaySeconds: 30      # 延迟加载时间periodSeconds: 10            # 重试时间间隔timeoutSeconds: 1            # 超时时间设置successThreshold: 1          # 健康阈值failureThreshold: 6          # 不健康阈值resources:                     # 容器资源管理limits:                      # 资源限制(监控使用情况)cpu: 0.5memory: 1Girequests:                    # 最小可用资源(灵活调度)cpu: 0.1memory: 200Mienv:- name: TZvalue: Asia/Shanghai
---
kind: HorizontalPodAutoscaler            # 弹性伸缩控制器
apiVersion: autoscaling/v2beta2
metadata:name: {APP_NAME}
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: {APP_NAME}minReplicas: {REPLICAS}                # 缩放范围maxReplicas: 6metrics:- type: Resourceresource:name: cpu                        # 指定资源指标target:type: UtilizationaverageUtilization: 50
http://www.lryc.cn/news/109424.html

相关文章:

  • Django学习记录:使用ORM操作MySQL数据库并完成数据的增删改查
  • React Hooks 中的 useEffect(副作用)
  • [CKA]考试之持久化存储卷PersistentVolume
  • 基于LLM的SQL应用程序开发实战(一)
  • 如何批量实现多行合并后居中
  • 【深度学习_TensorFlow】手写数字识别
  • antv/l7地图,鼠标滚动,页面正常滑动-- 我们忽略的deltaY
  • 再续AM335x经典,米尔TI AM62x核心板上市,赋能新一代HMI
  • springboot和Django哪一个做web服务器框架更好
  • C#核心知识回顾——21.归并排序
  • 基于netty的rpc远程调用
  • RabbitMQ输出日志配置
  • 解决一个Sqoop抽数慢的问题,yarn的ATSv2嵌入式HBASE崩溃引起
  • 为Android构建现代应用——应用导航设计
  • 聊聊 Docker 和 Dockerfile
  • element表格+表单+表单验证结合u
  • 数据库:MYSQL参数max_allowed_packet 介绍
  • 基于DiscordMidjourney API接口实现文生图
  • springboot+vue农产品特产商城销售平台_50kf2 多商家
  • 【深度学习_TensorFlow】感知机、全连接层、神经网络
  • 软件测试(功能、接口、性能、自动化)详解
  • Oracle表段中的高水位线HWM
  • 【福建事业单位-推理判断】03类别推理
  • Leetcode-每日一题【剑指 Offer 05. 替换空格】
  • zookeeper+kafka分布式消息队列集群的部署
  • VR全景旅游,智慧文旅发展新趋势!
  • 详解EMBER数据集中对PE文件提取ByteEntropyHistogram特征
  • 垃圾回收机制和常用的算法
  • 【PostgreSQL】系列之 一 schema详解(二)
  • 性能优化-react路由懒加载和组件懒加载