当前位置: 首页 > news >正文

势能线段树

目录

简单介绍

 题目

1. 上帝造题的七分钟 2 

2.SUM and REPLACE

3. And RMQ

总结 

简单介绍

 题目

1. 上帝造题的七分钟 2 

链接:https://www.luogu.com.cn/problem/P4145

 维护两种操作

1.区间开根号(下取整)

2.区间和询问

显然无法通过懒标记来计算区间开根号后的值,其由叶子结点本身的值决定。容易发现当一个数连续进行开根号操作会在很少的次数变为1,且值不再改变,1即为零势能点。因此我们可以维护区间max。一旦区间修改时发现此区间的max<=1时,我们不需要再次修改,直接return即可,否则向下递归修改。

Code:

#include<bits/stdc++.h>
using namespace std;
#define PII pair<int,int>
#define endl "\n"
#define int long long
const int N=1e5+10;
struct segment_tree {int a[N];struct node {int l,r;int mx,sum;}tr[N<<2];void build(int u,int l,int r) {tr[u].l=l,tr[u].r=r;if(l==r) {tr[u].mx=tr[u].sum=a[l];return ;}int mid=(l+r)>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);} void modify(int u,int l,int r) {if(tr[u].mx<=1) return ;if(tr[u].l==tr[u].r) {tr[u].mx=sqrt(tr[u].mx);tr[u].sum=tr[u].mx;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(l<=mid) modify(u<<1,l,r);if(r>mid) modify(u<<1|1,l,r);pushup(u);} int query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) {return tr[u].sum;}int mid=(tr[u].l+tr[u].r)>>1;int res=0;if(l<=mid) res+=query(u<<1,l,r);if(r>mid) res+=query(u<<1|1,l,r);return res;}void pushup(int u) {tr[u].sum=tr[u<<1].sum+tr[u<<1|1].sum;tr[u].mx=max(tr[u<<1].mx,tr[u<<1|1].mx);}
}ST;
signed main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);int n,m;cin>>n;for(int i=1;i<=n;i++) cin>>ST.a[i];ST.build(1,1,n);cin>>m;while(m--) {int op,l,r;cin>>op>>l>>r;if(l>r) swap(l,r);if(op==0) ST.modify(1,l,r);else cout<<ST.query(1,l,r)<<endl;     }
}

2.SUM and REPLACE

链接:https://codeforces.com/contest/920/problem/F

定义f(x)为x因子的数量

维护三种操作

1.区间修改x=f(x)  

2.区间和查询

手动模拟f(x)可以发现,进行f(x)操作,数值单调不增,且x<=2时,其值不在改变,因此同上题一样维护区间最大值即可。f(x)可以O(nlogn)时间预处理出来。

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define PII pair<int,int>
#define endl "\n"
#define int long long
const int N=3e5+10,M=1e6+10;
int d[M+1];
struct segment_tree {int a[N];struct node {int l,r;int mx,sum;}tr[N<<2];void build(int u,int l,int r) {tr[u].l=l,tr[u].r=r;if(l==r) {tr[u].mx=tr[u].sum=a[l];return ;}int mid=(l+r)>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);} void modify(int u,int l,int r) {if(tr[u].mx<=2) return ;if(tr[u].l==tr[u].r) {tr[u].mx=d[tr[u].mx];tr[u].sum=tr[u].mx;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(l<=mid) modify(u<<1,l,r);if(r>mid) modify(u<<1|1,l,r);pushup(u);} int query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) {return tr[u].sum;}int mid=(tr[u].l+tr[u].r)>>1;int res=0;if(l<=mid) res+=query(u<<1,l,r);if(r>mid) res+=query(u<<1|1,l,r);return res;}void pushup(int u) {tr[u].sum=tr[u<<1].sum+tr[u<<1|1].sum;tr[u].mx=max(tr[u<<1].mx,tr[u<<1|1].mx);}
};
signed main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);for(int i=1;i<=M;i++) {  //预处理for(int j=i;j<=M;j+=i) {d[j]++;}}int n,m;cin>>n>>m;segment_tree ST;for(int i=1;i<=n;i++) cin>>ST.a[i];ST.build(1,1,n);while(m--) {int op,l,r;cin>>op>>l>>r;if(op==1) ST.modify(1,l,r);else cout<<ST.query(1,l,r)<<endl;}
}

3. And RMQ

链接:

维护三个操作

1.区间按位与x

2.区间最大值

3.单点修改

这题零势能点藏得较深,我们考虑将x二进制展开,发现在x的二进制位为零的位置,区间所有数的二进制位也为零,则操作可以忽略。维护区间或   orsum=a_{l}|a_{l+2}|a_{l+2}|a_{r-1}|...|a_{r}  

orsum & x =orsum,则直接return 

Code:

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define PII pair<int,int>
#define endl "\n"
const int N=4e5+10;
struct segment_tree {int a[N];struct node {int l,r;int mx,sum;}tr[N<<2];void build(int u,int l,int r) {tr[u].l=l,tr[u].r=r;if(l==r) {tr[u].mx=tr[u].sum=a[l];return ;}int mid=(l+r)>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);} void modify(int u,int l,int r,int x) {if((tr[u].sum&x)==tr[u].sum) return ;if(tr[u].l==tr[u].r) {tr[u].mx=tr[u].mx&x;tr[u].sum=tr[u].mx;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(l<=mid) modify(u<<1,l,r,x);if(r>mid) modify(u<<1|1,l,r,x);pushup(u);} int query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) {return tr[u].mx;}int mid=(tr[u].l+tr[u].r)>>1;int res=0;if(l<=mid) res=max(res,query(u<<1,l,r));if(r>mid) res=max(res,query(u<<1|1,l,r));return res;}void update(int u,int k,int x) {if(tr[u].l==tr[u].r) {tr[u].mx=tr[u].sum=x;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(k<=mid) update(u<<1,k,x);else update(u<<1|1,k,x);pushup(u);}void pushup(int u) {tr[u].sum=tr[u<<1].sum|tr[u<<1|1].sum;tr[u].mx=max(tr[u<<1].mx,tr[u<<1|1].mx);}
}ST;
int main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);int n,m;cin>>n>>m;for(int i=1;i<=n;i++) cin>>ST.a[i];ST.build(1,1,n);while(m--) {int l,r,x;string op;cin>>op;if(op=="AND")  {cin>>l>>r>>x;ST.modify(1,l,r,x);}else if(op=="UPD") {cin>>l>>x;ST.update(1,l,x);}else {cin>>l>>r;cout<<ST.query(1,l,r)<<endl;}}
}

总结 

1.对于区间修改操作,修改操作会使得值在趋向零势能点严格单调减少,在变为零势能点后不在变化。需要维护一个值来界定是否到达零势能

2.且题目不能出现其他非单调的区间修改操作,如区间加,区间乘等。如果有其他修改操作,可以通过构造形如 update1 ,update 2,update 1,update 2 的数据破坏单调性,从而使操作1复杂度变为暴力修改的O(nlogn)

http://www.lryc.cn/news/107596.html

相关文章:

  • 【phaser微信抖音小游戏开发004】往画布上增加文本以及文本的操作
  • 【1.4】Java微服务:服务注册和调用(Eureka和Ribbon实现)
  • QT中使用ffmpeg的api进行视频的播放
  • 使用idea实现git操作大全(在项目开发中遇到的实际情况
  • SQL面试题:一个优化案例
  • 链表的总体涵盖以及无哨兵位单链表实现——【数据结构】
  • 网页版Java五子棋项目(一)websocket【服务器给用户端发信息】
  • 企业大数据可视化案例专题分享-入门
  • GoogLeNet卷积神经网络-笔记
  • 腾讯云TencentOS Server镜像系统常见问题解答
  • 【项目 进程13】2.28共享内存(1) 2.29共享内存(2)
  • Flask框架-流量控制:flask-limiter的使用
  • 【机器学习】西瓜书习题3.5Python编程实现线性判别分析,并给出西瓜数据集 3.0α上的结果
  • Elasticsearch:通过动态修剪实现更快的基数聚合
  • Webpack5 生产模式压缩图片ImageMinimizerPlugin
  • 时序预测 | Matlab实现基于BP神经网络的电力负荷预测模型
  • 基于回溯算法实现八皇后问题
  • Linux【网络编程】之深入理解TCP协议
  • 如何克服看到别人优于自己而感到的焦虑和迷茫?
  • 浅谈React中的ref和useRef
  • Linux C 获取主机网卡名及 IP 的几种方法
  • 解密外接显卡:笔记本能否接外置显卡?如何连接外接显卡?
  • list与erase()
  • Arcgis 分区统计majority参数统计问题
  • vue2+wangEditor5富文本编辑器(图片视频自定义上传七牛云/服务器)
  • shell脚本练习--安全封堵脚本,使用firewalld实现
  • 双端冒泡排序
  • 如何在Visual Studio Code中用Mocha对TypeScript进行测试
  • GO中Json的解析
  • chatgpt 提示词-关于数据科学的 75个词语