当前位置: 首页 > news >正文

链表的总体涵盖以及无哨兵位单链表实现——【数据结构】

 😊W…Y:个人主页

在学习之前看一下美丽的夕阳,也是很不错的。

如果觉得博主的美景不错,博客也不错的话,关注一下博主吧💕

在上一期中,我们说完了顺序表,并且提出顺序表中的问题

1. 中间/头部的插入删除,时间复杂度为O(N)

2. 增容需要申请新空间,拷贝数据,释放旧空间。会有不小的消耗。

3. 增容一般是呈2倍的增长,势必会有一定的空间浪费。例如当前容量为100,满了以后增容到 200,我们再继续插入了5个数据,后面没有数据插入了,那么就浪费了95个数据空间。

思考:如何解决以上问题呢?

今天的链表就会解决这些顺序表中出现的问题。那什么是链表呢?

目录

链表

链表的概念及结构

链表的分类

无头(无哨兵位)单链表实现

单链表结构

创建节点

 打印链表内容

头插

尾插

头删

 尾删

查找需要内容具体位置 

其他功能


链表

链表的概念及结构

概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表 中的指针链接次序实现的 。

链表如同小火车,一节与一节相关联

注意:

1.链式结构在逻辑上是连续的,但在物理上不一定连续。

2.节点都是从堆上申请的。

3.从堆上申请空间,是按一定策略分配的,申请的空间可能连续,可能不连续。 

假设在32位系统上,结点中值域为int类型,则一个节点的大小为8个字节,则也可能有下述链表:

链表的分类

实际中链表的结构非常多样,以下情况组合起来就有8种链表结构:

1. 单向或者双向

2. 带头或者不带头

3. 循环或者非循环

虽然有这么多的链表的结构,但是我们实际中最常用还是两种结构:

 1. 无头单向非循环链表:结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等。另外这种结构在笔试面试中出现很多。

2. 带头双向循环链表:结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都 是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带 来很多优势,实现反而简单了,后面我们代码实现了就知道了。

下面就是对无哨兵位单链表实现 

无头(无哨兵位)单链表实现

单链表结构

typedef int SLTDataType;typedef struct SListNode
{SLTDataType data;struct SListNode* next;
}SLTNode;

使用typedef将int 与结构体重命名更好的使用清晰,定义next指针需要指向下一个结构的地址方便链接。

单链表是只有一个指针指向后面节点,当头部指针向后移动时就找不到前面的节点了,所以在创建单链表时,我们要创建一个结构体指针变量固定在头位置,确保这个单链表完整性

我们在主函数中创建:SLTNode* plist = NULL;

plist要等于链表中的第一个结构体的地址,防止找不到链表的头部。

创建节点

SLTNode* BuySListNode(SLTDataType x)
{SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));if (newnode == NULL){perror("malloc");exit(-1);}newnode->data = x;newnode->next = NULL;return newnode;
}

 将需要存放的数据传入创建节点函数,使用malloc在堆中创建需要的空间。在这里我们必须对创建的空间进行检测是否创建成功,否则直接将退出程序。

创建出的空间也是结构体,我们需要给data赋需要存储的数据,将next赋值为空,否则将成为野指针。将创建好的空间进行返回即可。

 打印链表内容

void SLTPrint(SLTNode* phead)
{SLTNode* cur = phead;while (cur){printf("%d->", cur->data);cur = cur->next;}printf("NULL\n");
}

创建一个可以遍历的指针,进行逐一遍历打印即可。

头插

头插在进行过程中,一定会改变plist指向的节点,无论链表是否为空过程都是相同的,所以我们在头插时一定会改变指针plist指向的内容,所以这是我们就得传入plist的地址进行调用修改,这时我们就得使用二级指针进行操作。

void SLTPushFront(SLTNode** pphead, SLTDataType x)
{SLTNode* newnode = BuySListNode(x);newnode->next = *pphead;*pphead = newnode;
}

先将*pphead指向的空间赋给新创建的空间中的next,再使用二级指针将头指针的内容修改为新空间的地址即可。

尾插

在创建尾插函数时,我们就要考虑链表是否为空,当我们在链表为空时进行尾插,就必须改变头指针,所以尾插这个函数应该分情况进行:

void SLTPushBack(SLTNode** pphead, SLTDataType x)
{SLTNode* newnode = BuySListNode(x);if (*pphead == NULL){//改变的结构体的指针,所以要用二级指针*pphead = newnode;}SLTNode* tail = *pphead;while (tail->next != NULL){tail = tail->next;}//改变的为结构体,所以用一级指针tail->next = newnode;
}

 再往后插入就不需要对头指针做动作了。

 所以这里我们一定要把问题想周全,要不然程序就会报错甚至直接崩溃。

头删

void SLTPopFront(SLTNode** pphead);
{assert(*pphead);SLTNode* newhead = (*pphead)->next;free(*pphead);*pphead = newhead;
}

 头删时我们应该先创建一个临时指针指向需要释放的空间,如果直接释放空间,我们就使链表直接“断裂”,找不到下一个节点地址。

当我们进行头删时,需要判断链表是否为空链表再进行释放。在头删时,头指针的地址就应该指向下一个节点地址,我们应该提前进行标记,在释放完成后将下一个节点地址再次付给头指针即可。

 尾删

尾删和尾插都要考虑很多,尾删要考虑两种情况:1.只有一个节点2.有很多节点。当只剩最后一个节点时,我们删除时就要改变头指针,将头指针置空。我们一般使用两个指针,一个指向尾节点,一个指向尾节点前一个节点。当尾节点释放后,我们使用另一个指针将其next置空即可。

void SLTPopBack(SLTNode** pphead)
{assert(*pphead == NULL);if ((*pphead)->next = NULL){free(*pphead);*pphead = NULL;}else{SLTNode* tailPrev = NULL;SLTNode* tail = *pphead;while (tail->next){tailPrev = tail;tail = tail->next;}free(tail);tailPrev->next = NULL;}
}

假设只剩最后一个节点: 在空链表时,我们一定要进行判断assert(*pphead),防止出错。 

查找需要内容具体位置 

当我们想要知道我们存储的数据在哪个位置时,我们就需要进行查找,返回其地址即可

SLTNode* SLTFind(SLTNode* phead, SLTDataType x)
{assert(phead);SLTNode* find = phead;while (find){if (find->data == x)return find;find = find->next;}printf("没找到\n");return NULL;
}

这里我们依旧使用暴力查找法,进行逐一对比查找!!!

单链表的基本功能我们已经形成,我们已经完成了头插、尾插、头删、尾删。单链表的基本内容和注意事项已经强调。我们其实还可以继续完善单链表,使其功能更加强大,在这里博主就不过多的说明了,其中的原理和注意事项和前面差不多。

现在我将剩下一些功能逐一展现供大家参考:

其他功能

//在pos之前插入x
void SLTNInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x);
//在pos之后插入x
void SLTInsertAfter(SLTNode* pos, SLTDataType x);
//删除pos位置
void SLTErase(SLTNode** pphead, SLTNode* pos);
//删除pos的后一个位置
void SLTEraseAfter(SLTNode* pos);

在pos之前插入x: 

void SLTNInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x)
{assert(pphead && pos);SLTNode* newnode = BuySListNode(x);SLTNode* find = *pphead;SLTNode* finding = NULL;if (*pphead == pos){newnode->next = *pphead;*pphead = newnode;return;}elsewhile (find != pos){finding = find;find = find->next;}finding->next = newnode;newnode->next = find;
}

在pos之后插入x:

void SLTInsertAfter(SLTNode* pos, SLTDataType x);
{assert(pos);SLTNode* newnode = BuySListNode(x);newnode->next = pos->next;pos->next = newnode;
}

删除pos位置的数据:

void SLTErase(SLTNode** pphead, SLTNode* pos)
{assert(pphead&&pos);SLTNode* find = *pphead;SLTNode* finding = NULL;while (find != pos){finding = find;find = find->next;}if (*pphead == pos){SLTNode* newhead = (*pphead)->next;free(*pphead);*pphead = newhead;}else{finding->next = find->next;free(find);find = NULL;}
}

删除pos之后的数据:

void SLTErasetAfter(SLTNode* pos)
{assert(pos);if (pos->next == NULL){printf("后面没有数可以删除\n");return;}else{pos->next = pos->next->next;free(pos);pos = NULL;}
}

以上就是复现无头单链表的全部内容,有兴趣的可以继续打磨添加一些新功能。

本期内容到这里就结束了,觉得博主内容有用的关注一下博主,一健三连是对博主最大的鼓励!再次感谢大家观看!!!

http://www.lryc.cn/news/107590.html

相关文章:

  • 网页版Java五子棋项目(一)websocket【服务器给用户端发信息】
  • 企业大数据可视化案例专题分享-入门
  • GoogLeNet卷积神经网络-笔记
  • 腾讯云TencentOS Server镜像系统常见问题解答
  • 【项目 进程13】2.28共享内存(1) 2.29共享内存(2)
  • Flask框架-流量控制:flask-limiter的使用
  • 【机器学习】西瓜书习题3.5Python编程实现线性判别分析,并给出西瓜数据集 3.0α上的结果
  • Elasticsearch:通过动态修剪实现更快的基数聚合
  • Webpack5 生产模式压缩图片ImageMinimizerPlugin
  • 时序预测 | Matlab实现基于BP神经网络的电力负荷预测模型
  • 基于回溯算法实现八皇后问题
  • Linux【网络编程】之深入理解TCP协议
  • 如何克服看到别人优于自己而感到的焦虑和迷茫?
  • 浅谈React中的ref和useRef
  • Linux C 获取主机网卡名及 IP 的几种方法
  • 解密外接显卡:笔记本能否接外置显卡?如何连接外接显卡?
  • list与erase()
  • Arcgis 分区统计majority参数统计问题
  • vue2+wangEditor5富文本编辑器(图片视频自定义上传七牛云/服务器)
  • shell脚本练习--安全封堵脚本,使用firewalld实现
  • 双端冒泡排序
  • 如何在Visual Studio Code中用Mocha对TypeScript进行测试
  • GO中Json的解析
  • chatgpt 提示词-关于数据科学的 75个词语
  • (自控原理)控制系统的数学模型
  • Webpack5 cacheGroups
  • 前端面试的游览器部分(5)每篇10题
  • 数据挖掘七种常用的方法汇总
  • 自然语言处理学习笔记(二)————语料库与开源工具
  • Rust dyn - 动态分发 trait 对象