当前位置: 首页 > news >正文

【大数据之Flume】四、Flume进阶之复制和多路复用、负载均衡和故障转移、聚合案例

1 复制和多路复用

(1)需求:使用 Flume-1 监控文件变动(可以用Exec Source或Taildir Source),Flume-1 将变动内容传递给 Flume-2(用Avro Sink传),(用Avro Source接)Flume-2 负责存储到 HDFS。同时 Flume-1 将变动内容传递给 Flume-3,Flume-3 负责输出到 Local FileSystem。

(2)分析:
在这里插入图片描述
步骤:
(1)在/opt/module/flume-1.9.0/job 目录下创建 group1 文件夹,在/opt/module/flume-1.9.0/目录下创建 data 文件夹,在该文件夹下创建flume文件夹。

(2)在 group1创建 flume-file-flume.conf:配置 1 个接收日志文件的source 和两个 channel、两个 sink,分别输送给 flume-flume- hdfs 和 flume-flume-dir。

vim  flume-file-flume.conf# Name the components on this agent 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
#将数据流复制给所有 channel 
a1.sources.r1.selector.type = replicating# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/flume-1.9.0/logs/flume.log
a1.sources.r1.shell = /bin/bash -c# Describethe sink
# sink 端的 avro 是一个数据发送者 
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 4141# sink 端的 avro 是一个数据发送者
a1.sinks.k2.type= avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 4142# Describe thechannel 
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100a1.channels.c2.type= memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel =c2

(3)在group1下创建flume-flume-hdfs.conf:配置上级 Flume 输出的 Source,输出是到 HDFS 的Sink。

vim flume-flume-hdfs.conf# Name the components on this agent 
a2.sources = r1
a2.sinks = k1
a2.channels = c1# Describe/configure the source 
# source 端的 avro 是一个数据接收服务 
a2.sources.r1.type= avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 4141# Describe the sink 
a2.sinks.k1.type= hdfs
a2.sinks.k1.hdfs.path = hdfs://hadoop102:8020/flume2/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹 
a2.sinks.k1.hdfs.round= true
#多少时间单位创建一个新的文件夹 
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位 
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个Event 才 flush 到 HDFS 一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩 
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval= 30
#设置每个文件的滚动大小大概是 128M
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与Event 数量无关 
a2.sinks.k1.hdfs.rollCount = 0# Describe thechannel 
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)在group1下创建flume-flume-dir.conf:配置上级 Flume 输出的 Source,输出是到本地目录的 Sink。

vim flume-flume-dir.conf# Name the components on this agent 
a3.sources = r1
a3.sinks = k1
a3.channels = c2# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 4142# Describe the sink
a3.sinks.k1.type= file_roll
a3.sinks.k1.sink.directory = /opt/module/flume-1.9.0/data/flume# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100# Bind the source and sink to the channel 
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2

提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会在本地创建新的目录。

(5)先开启HDFS,再分别启动flume-flume-hdfs、flume-flume-dir、flume-file-flume。
  服务器要先开启,再开启客户端,

myhadoop.sh startbin/flume-ng agent -n a2 -c conf/ -f job/group1/flume-flume-hdfs.conf
bin/flume-ng agent -n a3 -c conf/ -f job/group1/flume-flume-dir.conf
bin/flume-ng agent -n a1 -c conf/ -f job/group1/flume-file-flume.conf

(6)检查HDFS上的数据
在这里插入图片描述
在这里插入图片描述

2 负载均衡和故障转移

(1)故障转移需求:使用 Flume1 监控一个端口,其 sink 组中的 sink 分别对接 Flume2 和 Flume3,采用FailoverSinkProcessor,实现故障转移的功能。

(2)分析:
在这里插入图片描述
步骤:
(1)在/opt/module/flume-1.9.0/job 目录下创建 group2 文件夹,在该文件夹下创建flume-netcat-flume.conf、flume-flume-console1.conf、flume-flume-console2.conf。

(2)flume-netcat-flume.conf:配置 1 个 netcat source 和 1 个 channel、1 个 sink group(2 个 sink),分别输送给 flume-flume-console1.conf、flume-flume-console2.conf。

# Name the components on this agent 
a1.sources = r1
a1.channels = c1
a1.sinkgroups = g1
a1.sinks = k1 k2# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port =44444a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
a1.sinkgroups.g1.processor.maxpenalty = 10000# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 4141a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 4142# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel 
a1.sources.r1.channels = c1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel =c1

(3)创建 flume-flume-console1.conf:配置上级 Flume 输出的 Source,输出是到本地控制台。

# Name the components on this agent 
a2.sources = r1
a2.sinks = k1
a2.channels = c1# Describe/configure the source 
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 4141# Describe the sink
a2.sinks.k1.type = logger# Describe the channel 
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)创建 flume-flume-console2.conf:配置上级 Flume 输出的 Source,输出是到本地控制台。

# Name the components on this agent 
a3.sources = r1
a3.sinks = k1
a3.channels = c1# Describe/configure the source 
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 4142# Describe the sink
a3.sinks.k1.type = logger# Describe the channel 
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

(5)执行配置文件,分别开启对应配置文件: flume-flume-console2.conf , flume-flume-console1.conf , flume-netcat-flume.conf。
  同样是需要先开启服务端,再开客户端。

bin/flume-ng agent -c conf/ -n a3 -f job/group2/flume-flume-console2.conf -Dflume.root.logger=INFO,console
bin/flume-ng agent -c conf/ -n a2 -f job/group2/flume-flume-console1.conf -Dflume.root.logger=INFO,console
bin/flume-ng agent -c conf/ -n a1 -f job/group2/flume-netcat-flume.conf

(6)使用 netcat 工具向本机的 44444 端口发送内容

nc localhost 44444

(7)查看Flume2 及 Flume3 的控制台打印日志。
Flume3优先级更高。
在这里插入图片描述
(8)将 Flume3 kill,观察 Flume2 的控制台打印情况。
在这里插入图片描述
在这里插入图片描述
负载均衡需求:
  使用 Flume1 监控一个端口,其 sink 组中的 sink 分别对接 Flume2 和 Flume3,采用FailoverSinkProcessor,实现负载均衡的功能。

步骤:
  只需要修改flume-netcat-flume.conf中a1.sinkgroups.g1.processor的配置内容,把原来相关的内容都删除掉,添加以下,其余相同。

a1.sinkgroups.g1.processor.type = load_balance;
#使用退避算法轮询sink组
a1.sinkgroups.g1.processor.backoff = true;

3 聚合

(1)需求:hadoop102 上的Flume-1 监控文件/opt/module/flume-1.9.0/group.log,hadoop103 上的Flume-2 监控某一个端口的数据流,Flume-1 与 Flume-2 将数据发送给 hadoop104 上的 Flume-3,Flume-3 将最终数据打印到控制台。

(2)分析:
在这里插入图片描述
步骤:
(1)在opt/module/flume-1.9.0/job 目录下创建一个group3 文件夹;分发整个Flume给hadoop103、hadoop104。

(2)在 hadoop102 上创建配置文件flume1-logger-flume.conf:配置 Source 用于监控 hive.log 文件,配置 Sink 输出数据到下一级Flume,并在/opt/module/flume-1.9.0/data下创建空白的文件group.log。

# Name the components on this agent 
a1.sources = r1
a1.sinks = k1
a1.channels = c1# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/flume-1.9.0/data/group.log
a1.sources.r1.shell= /bin/bash -c# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop104
a1.sinks.k1.port = 4141# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

(3)在 hadoop103 上创建配置文件flume2-netcat-flume.conf:配置 Source 监控端口 44444 数据流,配置Sink 数据到下一级Flume。

# Name the components on this agent 
a2.sources = r1
a2.sinks = k1
a2.channels = c1# Describe/configure the source
a2.sources.r1.type = netcat
a2.sources.r1.bind = hadoop103
a2.sources.r1.port = 44444# Describe the sink 
a2.sinks.k1.type = avro
a2.sinks.k1.hostname = hadoop104
a2.sinks.k1.port = 4141# Use a channel which buffers events in memory 
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 10# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)在 hadoop104 上创建配置文件flume3-flume-logger.conf:配置 source 用于接收 flume1 与 flume2 发送过来的数据流,最终合并后 sink 到控制台

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c1# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop104
a3.sources.r1.port = 4141# Describe the sink# Describe the sink
a3.sinks.k1.type = logger# Describe the channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel 
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

(5)在各主机上分别执行配置文件:flume3-flume-logger.conf,flume2-netcat-flume.conf,flume1-logger-flume.conf。

[lyx@hadoop104 flume-1.9.0]$ bin/flume-ng agent -c conf/ -n a3 -f job/group3/flume3-flume-logger.conf -Dflume.root.logger=INFO,console
[lyx@hadoop103 flume-1.9.0]$ bin/flume-ng agent -c conf/ -n a2 -f job/group3/flume2-netcat-flume.conf
[lyx@hadoop102 flume-1.9.0]$ bin/flume-ng agent -c conf/ -n a1 -f job/group3/flume1-logger-flume.conf

(6)在 hadoop102 上向/opt/module/flume-1.9.0/data 目录下的 group.log 追加内容

[lyx@hadoop102 data]$ echo 'hello' > group.log

(7)在 hadoop103 上向 44444 端口发送数据

nc hadoop103 44444

(8)查看hadoop104上的数据。
在这里插入图片描述

http://www.lryc.cn/news/104999.html

相关文章:

  • 前端学习--vue2--插槽
  • 使用 Docker Compose 部署 Redis Cluster 集群,轻松搭建高可用分布式缓存
  • 在Spring Boot框架中集成 Spring Security
  • 登月再进一步:Apollo自动驾驶的里程碑
  • 嵌入式一开始该怎么学?学习单片机
  • Spring事件监听器ApplicationListener
  • 安全学习DAY10_HTTP数据包
  • 云原生落地实践的25个步骤
  • Stable diffusion 三大基础脚本 提示词矩阵,载入提示词,XYZ图表讲解
  • uniapp uni-combox 下拉提示无匹配项(完美解决--附加源码解决方案及思路)
  • 10. Mybatis 项目的创建
  • 历年 Nobel prize in Physics (诺贝尔物理学奖)简介
  • IDEA中Git面板操作介绍 变基、合并、提取、拉取、签出
  • Android Studio开发简易APP添加代办事项
  • python 统计所有的 仓库 提交者的提交次数
  • 018-从零搭建微服务-系统服务(五)
  • HarmonyOS 开发基础(三)登录页面单向数据绑定(父组件向子组件传参)
  • 发npm包
  • <el-empty>
  • IO流(4)- 序列化流与反序列化流
  • 人工智能如何应对 DevOps 监控和可观测性挑战
  • 数字化新时代,VR全景拍摄与制作
  • uniapp 权限说明
  • 3D Web轻量化渲染开发工具HOOPS Communicator是什么?
  • 心法利器[93] | 谈校招:技术面
  • excel英语翻译让你的数据更容易被理解
  • RK3588S之CPU--benchmark(二)
  • 入侵检查基础
  • JAVA开发工具-maven的安装与配置(最新最详细教程)
  • linux系统编程重点复习--进程的控制