当前位置: 首页 > news >正文

算法训练营第五十六天||● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

● 583. 两个字符串的删除操作

这道题涉及到两个字符串删除操作,注意递推公式,理解不到位,需要再次做

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  1. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  1. dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。vector<vector<int>> dp(word1.size()+1,vector<int> (word2.size()+1,0));for(int i = 0;i<word1.size()+1;i++){dp[i][0]= i;}for(int j = 0;j<word2.size()+1;j++){dp[0][j] = j;}for(int i = 1;i<=word1.size();i++){for(int j = 1;j<=word2.size();j++){if(word1[i-1]==word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+2));}}}return dp[word1.size()][word2.size()];}
};

● 72. 编辑距离 

这道题和之前讲的三四道题类似,都是一步一步递增的,之后需要继续看

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1,0));for(int i = 0;i<=word1.size();i++) dp[i][0] = i;for(int j = 0;j<=word2.size();j++) dp[0][j] = j;for(int i = 1;i<=word1.size();i++){for(int j = 1;j<=word2.size();j++){if(word1[i-1]==word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]))+1;}}}return dp[word1.size()][word2.size()];}
};

● 编辑距离总结篇 

1.判断子序列

if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];

2.不同的子序列

if (s[i - 1] == t[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {dp[i][j] = dp[i - 1][j];
}

3.两个字符串的删除操作

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
} else {dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}

4.编辑距离

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
}
else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

http://www.lryc.cn/news/104840.html

相关文章:

  • C语言每日一题:10.不使用+-*/实现加法+找到所有数组中消失的数。
  • LibreSSL SSL_connect: SSL_ERROR_SYSCALL in connection to github.com:443
  • JS数组的详解与使用
  • c++ / python / java / PHP / SQL / Ruby / Objective-C / JavaScript 发展史
  • Linux第一个小程序-进度条(缓冲区概念)
  • CentOS7环境安装tomcat
  • C# 中使用ValueTask优化异步方法
  • KVM创建新的虚拟机(图形化)
  • 正则表达式在格式校验中的应用以及包装类的重要性
  • Docker使用之java项目工程的部署
  • 3ds Max如何进行合成的反射光泽通道渲染
  • 114、Spring AOP是如何实现的?它和AspectJ有什么区别?
  • 正则表达式速通
  • 数据可视化(5)热力图及箱型图
  • React 组件通信-全面解析
  • “深入理解Spring Boot:快速构建微服务架构的利器“
  • SpringBoot超级详解
  • 手机的python怎么运行文件,python在手机上怎么运行
  • RBAC三级树状菜单实现(从前端到后端)未完待续
  • 牛客网Verilog刷题——VL41
  • 大整数截取解决方法(java代码)
  • Spring Boot使用@Async实现异步调用:自定义线程池
  • GFS 分布式文件系统
  • PHP-mysql学习笔记
  • AI技术快讯:清华开源ChatGLM2双语对话语言模型
  • 网络基础知识
  • 【应用层】HTTPS协议详细介绍
  • 【Tensorboard+Pytorch】使用注意事项
  • 设计模式行为型——命令模式
  • 13-2_Qt 5.9 C++开发指南_线程同步_QMutex+QMutexLocker(目前较为常用)