当前位置: 首页 > news >正文

汽车分析,随时间变化的燃油效率

简述

今天我们来分析一个汽车数据。
数据集由以下列组成:

  • 名称:每辆汽车的唯一标识符。
  • MPG:燃油效率,以英里/加仑为单位。
  • 气缸数:发动机中的气缸数。
  • 排量:发动机排量,表示其大小或容量。
  • 马力:发动机的功率输出。
  • 重量:汽车的重量。
  • 加速:提高速度的能力,以秒为单位。
  • 车型年份:汽车模型的制造年份。
  • 原产地:每辆汽车的原产地国家或地区。
    总的来看数据内容不是很多,分析起来还是很容易的。

目标

这个项目的主要目标是了解汽车的不同特性之间的关系,以及它们如何影响燃油效率(MPG -每加仑英里数)。该项目还旨在发现数据中任何有趣的趋势或模式,从而为汽车行业提供见解。

数据清理和预处理

# 导入库
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' ## 设置中文显示from scipy.stats import f_onewayfrom scipy.stats import ttest_ind# 导入数据
df = pd.read_csv('D:桌面\\Automobile.csv',encoding='gbk')

在这里插入图片描述

检查所有列的数据类型

在这里插入图片描述

检查缺失值

在这里插入图片描述

箱型图

df['马力'] = df['马力'].fillna(df['马力'].mean())
# 数字列列表
num_cols = ['mpg', '气缸数', '排量', '马力', '重量', '加速', '车型年份']for col in num_cols:plt.figure(figsize=(8, 4))sns.boxplot(df[col])plt.title(f'{col}箱线图 ')plt.show()

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

处理 ‘马力’ 中的异常值

首先,计算“马力”(horsepower)的四分位距(IQR)

Q1_hp = df['马力'].quantile(0.25)
Q3_hp = df['马力'].quantile(0.75)
IQR_hp = Q3_hp - Q1_hp

定义异常值的上限和下限。

lower_bound_hp = Q1_hp - 1.5 * IQR_hp
upper_bound_hp = Q3_hp + 1.5 * IQR_hp

将异常值限制在一定范围内。

df['马力'] = df['马力'].clip(lower=lower_bound_hp, upper=upper_bound_hp)

重复这个过程,针对“重量”

Q1_weight = df['重量'].quantile(0.25)
Q3_weight = df['重量'].quantile(0.75)
IQR_weight = Q3_weight - Q1_weightlower_bound_weight = Q1_weight - 1.5 * IQR_weight
upper_bound_weight = Q3_weight + 1.5 * IQR_weightdf['重量'] = df['重量'].clip(lower=lower_bound_weight, upper=upper_bound_weight)

特征工程

创建一个新的特征’hp_to_weight’,它是马力与重量的比率。

df['hp_to_weight'] = df['马力'] / df['重量']

检查前几行 DataFrame 以确认更改。


df.head()

在这里插入图片描述

生成数值变量的描述性统计数据。


df.describe()

在这里插入图片描述

数据可视化

生成数值变量的直方图。


num_cols = ['mpg', '气缸数', '排量', '马力', '重量', '加速', '车型年份', 'hp_to_weight']for col in num_cols:plt.figure(figsize=(8, 4))sns.histplot(df[col], kde=True)plt.title(f' {col}直方图')plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

生成分类变量的条形图


plt.figure(figsize=(8, 4))
sns.countplot(x='原产地', data=df)
plt.title('原产地条形图')
plt.show()

在这里插入图片描述

双变量分析

为成对的数值变量生成散点图


num_cols = ['mpg', '气缸数', '排量', '马力', '重量', '加速', '车型年份', 'hp_to_weight']sns.pairplot(df[num_cols])
plt.show()

在这里插入图片描述

数值变化的相关矩阵

#计算数值变量之间的相关系数。
corr_matrix = df[num_cols].corr()# 显示相关矩阵
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('数值变化的相关矩阵')
plt.show()

在这里插入图片描述

group1 = df[df['原产地'] == 'usa']['mpg']
group2 = df[df['原产地'] == 'europe']['mpg']
group3 = df[df['原产地'] == 'japan']['mpg']# 进行单因素方差分析。
f_stat, p_value = f_oneway(group1, group2, group3)# 输出  F-statistic 和 p-value
print(f'F-statistic: {f_stat}')
print(f'p-value: {p_value}')

在这里插入图片描述

多变量分析

生成一组变量的配对图。

subset_cols = ['mpg', '马力', '重量', '原产地']
sns.pairplot(df[subset_cols], hue='原产地')
plt.show()

在这里插入图片描述

时间分析

# 计算每个型号年份的平均每加仑英里数。
avg_mpg_by_year = df.groupby('车型年份')['mpg'].mean()# 绘制随着时间变化的平均每加仑英里数。
plt.figure(figsize=(10, 6))
sns.lineplot(data=avg_mpg_by_year)
plt.title('平均每加仑英里数按车型年份分类')
plt.xlabel('车型年份')
plt.ylabel(' MPG平均值')
plt.show()

在这里插入图片描述

假设检验

# 删除具有缺失“mpg”值的行。
df = df.dropna(subset=['mpg'])# 将数据分成两组。
group1 = df[df['车型年份'] < 75]['mpg']  # 1975年之前制造的汽车
group2 = df[df['车型年份'] >= 75]['mpg']  # 1975年之后制造的汽车# 进行双样本t检验。
from scipy.stats import ttest_ind
t_stat, p_value = ttest_ind(group1, group2)# 输出 the t-statistic the p-value
print(f't-statistic: {t_stat}')
print(f'p-value: {p_value}')

在这里插入图片描述

结论

  • 随着时间的推移,燃油效率:平均每加仑英里数(mpg)似乎随着时间的推移而增加,这表明汽车变得更加省油。这可能是由于技术的进步和汽车制造业对燃油效率的日益关注。

  • 马力和重量:马力和重量之间似乎存在正相关关系,表明较重的汽车往往拥有更强劲的发动机。然而,马力和重量似乎都与mpg负相关,这表明较重的汽车和发动机功率更大的汽车往往更省油。

  • 产地和燃油效率:我们的假设检验表明,不同产地的汽车平均每加仑汽油行驶里程有显著差异。这表明汽车的生产地区可能会对其燃油效率产生影响。

  • 新功能-马力重量比:我们创造的新功能,马力重量比,可能会为这些变量和mpg之间的关系提供不同的结果

题外话

我整理了一些资源,如果你也对Python和大数据感兴趣,关注下方公众号免费提取资料。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/103348.html

相关文章:

  • 大数据面试题之Elasticsearch:每日三题(六)
  • 【管理设计篇】聊聊分布式配置中心
  • 远程控制平台简介
  • 韦东山Linux驱动入门实验班(5)LED驱动---驱动分层和分离,平台总线模型
  • 【雕爷学编程】MicroPython动手做(02)——尝试搭建K210开发板的IDE环境
  • C#——Thread与Task的差异比较及使用环境
  • 刷题 31-35
  • 【mysql】—— 数据类型详解
  • kafka常用命令
  • 数字图像处理(番外)图像增强
  • flutter:轮播
  • 高忆管理:股票投资策略是什么?有哪些?
  • 为公网SSH远程Ubuntu配置固定的公网TCP端口地址主图
  • 【前端知识】React 基础巩固(四十一)——手动路由跳转、参数传递及路由配置
  • Qt几种字符类型的相互转换
  • 软件测试员的非技术必备技能
  • 渗透测试:Linux提权精讲(二)之sudo方法第二期
  • ansible安装lnmp(集中式)
  • Tomcat的基本使用,如何用Maven创建Web项目、开发完成部署的Web项目
  • 微信小程序测试要点
  • TCP网络通信编程之netstat
  • Stable Diffusion:网页版 体验 / AI 绘图
  • 一文了解JavaScript 与 TypeScript的区别
  • 从更广阔的角度看待产业互联网,它展现的是一次重构的过程
  • 【PHP】简记问题:使用strtotime(‘-1 month‘, time)获取上个月第一天时间戳出错
  • 舌体分割的初步展示应用——依托Streamlit搭建demo
  • 从Vue层面 - 解析发布订阅模式和观察者模式区别
  • 面向对象之_多态_1
  • Spring学习笔记之spring概述
  • 旧项目导入Eclipse时文件夹看起来乱七八糟,无从下手的解决办法(无main或webapp等文件夹)