当前位置: 首页 > news >正文

YOLOv8教程系列:三、使用YOLOv8模型进行自定义数据集半自动标注

YOLOv8半自动标注

目标检测半自动标注的优点包括:

1.提高标注效率:算法能够自动标注部分数据,减少了人工标注的工作量,节省时间和资源。
2.降低成本:自动标注可以减少人工标注的成本,特别是对于大规模数据集来说,人工标注成本非常昂贵。
3.提高标注的一致性和准确性:计算机算法可以提供相对准确的初始标注,人工验证和修正后,可以确保标注的一致性和准确性。
4.改善数据集的质量:通过自动标注和人工验证,可以更全面地标注数据集,提高数据集的质量和丰富性。

具体而言:

1.根据现有数据集,训练一个YOLOv8 模型;
2.使用 YOLOv8 模型对图片进行目标检测,得到目标检测的结果;
3.将目标检测的结果转换为 XML 文件格式,保存预测好的 XML 文件。

新建一个名为generateXml.py文件

import os
import cv2
import datetimeclass GenerateJpgAndXml:"""参数名含义:parentName:存放jpg和xml上一级文件夹名字,如person"""def __init__(self, parentName, labelDict):self.parentName = parentName# 存放所有文件的主文件夹路径self.parentPath = "./JpgAndXml"self.midPath = os.path.join(self.parentPath, self.parentName)# 存放jpg文件夹名字self.jpgName = "images"# 存放xml文件夹名字self.xmlName = "Annotations"# 存放标签的字典self.labelDict = labelDict# 第一次进来,需要判断下文件夹是否存在self.isExist()def isExist(self):# 存放jpg文件的文件夹self.jpgPath = os.path.join(self.midPath, self.jpgName)# 存放xml文件的文件夹self.xmlPath = os.path.join(self.midPath, self.xmlName)# 判断jpg和xml文件夹是否存在,不存在则创建for perPath in [self.jpgPath, self.xmlPath]:# 判断所在目录下是否有该文件名的文件夹if not os.path.exists(perPath):# 创建多级目录用mkdirs# print(f"创建成功,已创建文件夹{perPath}")os.makedirs(perPath)# else:# print(f"创建失败,已存在文件夹{perPath}"def generatr_xml(self, frame, result):# print('开始写xml')# 获取当前时间戳xmlPrefix = datetime.datetime.now().strftime("%Y%m%d%H%M%S%f")# print(xmlPrefix)hwc = frame.shape# jpg名字jpgName = xmlPrefix + ".jpg"# jpg路径jpgPath = os.path.join(self.jpgPath, jpgName)# 写图片cv2.imwrite(jpgPath, frame)# xml路径xmlPath = os.path.join(self.xmlPath, xmlPrefix + ".xml")with open(xmlPath, 'w') as xml_file:xml_file.write('<annotation>\n')xml_file.write('\t<folder>' + self.parentName +'</folder>\n')xml_file.write('\t<filename>' + jpgName + '</filename>\n')xml_file.write('\t<path>' + jpgPath + '</path>\n')xml_file.write('\t<source>\n')xml_file.write('\t\t<database>' + 'Unknown' + '</database>\n')xml_file.write('\t</source>\n')xml_file.write('\t<size>\n')xml_file.write('\t\t<width>' + str(hwc[1]) + '</width>\n')xml_file.write('\t\t<height>' + str(hwc[0]) + '</height>\n')xml_file.write('\t\t<depth>'+str(hwc[2])+'</depth>\n')xml_file.write('\t</size>\n')xml_file.write('\t<segmented>0</segmented>\n')for re in result:ObjName = self.labelDict[re[0]]# [[0, 0.8, 110, 25, 150, 60], [1, 0.5, 40, 10, 50, 90]]xmin = int(re[2])ymin = int(re[3])xmax = int(re[4])ymax = int(re[5])xml_file.write('\t<object>\n')xml_file.write('\t\t<name>' + ObjName + '</name>\n')xml_file.write('\t\t<pose>Unspecified</pose>\n')xml_file.write('\t\t<truncated>0</truncated>\n')xml_file.write('\t\t<difficult>0</difficult>\n')xml_file.write('\t\t<bndbox>\n')xml_file.write('\t\t\t<xmin>' + str(xmin) + '</xmin>\n')xml_file.write('\t\t\t<ymin>' + str(ymin) + '</ymin>\n')xml_file.write('\t\t\t<xmax>' + str(xmax) + '</xmax>\n')xml_file.write('\t\t\t<ymax>' + str(ymax) + '</ymax>\n')# xml_file.write('\t\t\t<angle>' + str(4) + '</angle>\n')xml_file.write('\t\t</bndbox>\n')# xml_file.write('\t\t<extra/>\n')xml_file.write('\t</object>\n')xml_file.write('</annotation>')# customPrint(f"{jpgPath}的jpg和xml已写入")

新建名为yolov8_infer.py的文件,修改模型、标签名以及图片文件夹即可

from ultralytics import YOLO
from generateXml import GenerateJpgAndXml
import numpy as np
import os
import cv2# 加载yolov8模型
model = YOLO('runs/detect/train23/weights/best.pt',)
# 修改为自己的标签名
label_dict = {0: 'gray', 1: 'line', 2: 'black', 3: 'big_black'}
parent_name = label_dict[0]yolov8_xml = GenerateJpgAndXml(parent_name, label_dict)# 指定图片所在文件夹的路径
image_folder_path = 'data/images'# 获取文件夹中所有的文件名
file_names = os.listdir(image_folder_path)# 遍历每个文件
for file_name in file_names:# 判断是否是图片文件if file_name.endswith(('.jpg', '.jpeg', '.png', '.bmp', '.gif')):# 图片的完整路径image_path = os.path.join(image_folder_path, file_name)# 使用OpenCV读取图片img = cv2.imread(image_path)# Perform object detection on an image using the modelresults = model.predict(source=img,conf=0.1,max_det=300,iou=0.4,half=True,imgsz=640)# print(results)for result in results:xyxy = result.to("cpu").numpy().boxes.xyxyprint(result)# 假设 xyxy, conf 和 cls 分别是三个 NumPy 数组conf = result.to("cpu").numpy().boxes.confcls = result.to("cpu").numpy().boxes.clsconf_expanded = np.expand_dims(conf, axis=1)  # 在轴 1 上扩充cls_expanded = np.expand_dims(cls, axis=1)    # 在轴 1 上扩充xyxy = xyxy.astype(np.int32)# 使用 numpy.concatenate() 在轴 1 上拼接数组concatenated_array = np.concatenate((cls_expanded, conf_expanded, xyxy), axis=1)print(concatenated_array)yolov8_xml.generatr_xml(img, concatenated_array)print(concatenated_array)print('-'*50)

运行过程截图
在这里插入图片描述

http://www.lryc.cn/news/103176.html

相关文章:

  • AI聊天GPT三步上篮!
  • 如何彻底卸载VMware
  • [个人笔记] Windows配置NTP时间同步
  • Jetson Docker 编译 FFmpeg 支持硬解nvmpi和cuvid
  • 某某某小说app接口抓包分析
  • 开发一个RISC-V上的操作系统(四)—— 内存管理
  • 区块链:可验证随机函数
  • Flask中flask-session
  • react-Native init初始化项目报错”TypeError: cli.init is not a function“
  • 【gitlib】linux系统rpm安装gitlib最新版本
  • iOS开发-检查版本更新与强制更新控制
  • 自动化运维工具——Ansible
  • W2NER详解
  • ElementUI tabs标签页样式改造美化
  • 出海周报|Temu在美状告shein、ChatGPT安卓版上线、小红书回应闪退
  • 2023年7月26日 单例模式
  • [ 容器 ] Docker 安全及日志管理
  • 游游的排列构造
  • 拯救者Y9000K无线Wi-Fi有时不稳定?该如何解决?
  • 【业务功能篇59】Springboot + Spring Security 权限管理 【下篇】
  • 性能优化 - 前端性能监控和性能指标计算方式
  • git stash clear清空本地暂存代码
  • 消防应急照明设置要求在炼钢车间电气室的应用
  • element 表单验证 深层验证绑定
  • brew 换镜像网站
  • WIZnet W5500-EVB-Pico 静态IP配置教程(二)
  • R语言无法调用stats.dll的问题解决方案[补充]
  • 无线蓝牙耳机有什么推荐?怎么选择适合自己的耳机?七款蓝牙耳机分享
  • 【数据分析专栏之Python篇】四、pandas介绍
  • 《算法竞赛·快冲300题》每日一题:“最小生成树”