当前位置: 首页 > news >正文

机器学习:异常检测

在这里插入图片描述

问题定义

在这里插入图片描述
anomaly,outlier, novelty, exceptions

不同的方法使用不同的名词定义这类问题。

在这里插入图片描述

应用

在这里插入图片描述

二分类

在这里插入图片描述

假如只有正常的数据,而异常的数据的范围非常广的话(无法穷举),二分类这些不好做。另外就是异常资料不太好收集。

分类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
每张图片都有标注,就可以来训练一个辛普森家族的成员分类器。
在这里插入图片描述
基于classifer来做异常检测。
在这里插入图片描述
基于信心分数来做异常问题,大于某值就是正常,小于某值就是异常
在这里插入图片描述
最大分数作为confidence
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
部分数据会有误判的情况

信心分估计

在这里插入图片描述
直接教网络信心分数,不仅是做分类任务C,也会给出信心分P

Train 和 Eval

在这里插入图片描述
100张辛普森家族图片,5张异常图片
在这里插入图片描述
在这里插入图片描述

  • 有蓝色的正常图被错误分类成异常
  • 有红色的异常图被错误分类成正常

这个时候用dev set上评估系统,这是一个二元分类问题。
在这里插入图片描述
正常异常比例的分布是非常悬殊的,这个系统可以有很高的准确率,但是没有做什么事,用acc准确率分类是没有意义的。

在这里插入图片描述
使用混淆矩阵:
在这里插入图片描述
在这里插入图片描述
cost table,做错的行为的代价,算一个分数:
在这里插入图片描述
在这里插入图片描述
针对自己的任务设定cost table。还有一些方法来衡量,比如AUC(roc曲线的面积)。

问题

在这里插入图片描述
在这里插入图片描述
脸上是黄的,然后系统给的分数就高,说明这个分类系统学到的并不是认清人,而是脸是否是黄的。

在这里插入图片描述
假设可以收到一些异常资料,可以学习在分类的同时,也给出异常的分数,但是这类数据不易收集。可以考虑使用GAN生成异常数据。

没有标签的场景

在这里插入图片描述
在这里插入图片描述
正常玩家和异常玩家(小白)

问题定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
需要数值化的方法来给每一个玩家的分数。 f ( 斯塔 ) f(斯塔) f(斯塔) 概率密度估计
在这里插入图片描述
高斯分布
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/101863.html

相关文章:

  • flask中的蓝图
  • Spring Cloud+Spring Boot+Mybatis+uniapp+前后端分离实现知识付费平台免费搭建
  • uniapp 瀑布流 (APP+H5+微信小程序)
  • 医疗小程序:提升服务质量与效率的智能平台
  • ComPDFKit 转档SDK OCR表格识别功能
  • 华为OD机考--阿里巴巴黄金箱
  • mybatis-config.xml-配置文件详解
  • 【雕爷学编程】MicroPython动手做(18)——掌控板之声光传感器
  • Ribbon源码
  • Linux下在终端输入密码隐藏方法
  • 【ARM 常见汇编指令学习 3 -- ARM64 无符号位域提取指令 UBFX】
  • 求分享如何批量压缩视频的容量的方法
  • ChatGPT 是如何工作的:从预训练到 RLHF
  • KafKa脚本操作
  • 【自动化运维】playbook剧本
  • java中双引号和单引号的区别
  • jenkinsfile指定jenkins流水线的构建号
  • 微信小程序:实现提示窗确定,取消执行不同操作(消息提示确认取消)showModal
  • 深度学习论文: Q-YOLO: Efficient Inference for Real-time Object Detection及其PyTorch实现
  • 解读随机森林的决策树:揭示模型背后的奥秘
  • OceanMind海睿思获评中国信通院“内审数字化产品评测”卓越级(最高级)!
  • TPlink云路由器界面端口映射设置方法?快解析内网穿透能实现吗?
  • css3的filter图片滤镜使用
  • ❤️创意网页:打造炫酷网页 - 旋转彩虹背景中的星星动画
  • react常用知识点
  • iOS开发-QLPreviewController与UIDocumentInteractionController显示文档
  • 八、用 ChatGPT 帮助排查生产事故
  • WPF实战学习笔记25-首页汇总
  • FreeRTOS源码分析-7 消息队列
  • 机器学习深度学习——权重衰减