当前位置: 首页 > news >正文

Box-Cox 变换

Box-cox 变化公式如下:

y ( λ ) = { y λ − 1 λ λ ≠ 0 l n ( y ) λ = 0 y^{(\lambda)}=\left\{ \begin{aligned} \frac{y^{\lambda} - 1}{\lambda} && \lambda \ne 0 \\ ln(y) && \lambda = 0 \end{aligned} \right. y(λ)= λyλ1ln(y)λ=0λ=0

y ( λ ) = { ( y + a ) λ − 1 λ λ ≠ 0 l n ( y + a ) λ = 0 y^{(\lambda)}=\left\{ \begin{aligned} \frac{(y + a)^{\lambda} - 1}{\lambda} && \lambda \ne 0 \\ ln(y + a) && \lambda = 0 \end{aligned} \right. y(λ)= λ(y+a)λ1ln(y+a)λ=0λ=0

根据参数 λ \lambda λ的取值不同,box-cox变换包含了三类函数族:对数函数族、指数函数族、导致函数。

变换的目标是使得变换后因变量线性回归模型的等方差、不相关、正太等假设:

y ( λ ) = [ y 1 ( λ ) y 2 ( λ ) . . . y n ( λ ) ] ∼ N ( X β , σ 2 I ) \bold{y}^{(\lambda)} = \left[\begin{array}{c} y_1^{(\lambda)} \\ y_2^{(\lambda)} \\ ... \\ y_n^{(\lambda)} \end{array}\right]\sim\mathcal{N}(\bold{X}\bold{\beta}, \sigma^2\bold{I}) y(λ)= y1(λ)y2(λ)...yn(λ) N(Xβ,σ2I)

L ( β , σ 2 ) = ( 1 2 π σ ) n e x p ( − 1 2 σ 2 ( y ( λ ) − X β ) ′ ( y ( λ ) − X β ) ) J L(\beta,\sigma^2) = (\frac{1}{\sqrt{2\pi}\sigma})^nexp(-\frac{1}{2\sigma^2}(\bold{y}^{(\lambda)} - \bold{X\beta})'(\bold{y}^{(\lambda)} - \bold{X\beta}))\bold{J} L(β,σ2)=(2π σ1)nexp(2σ21(y(λ)Xβ)(y(λ)Xβ))J

J = ∏ i = 1 n ∣ d y i ( λ ) d y i ∣ = ∏ i = 1 n y i λ − 1 \bold{J} = \prod_{i=1}^n|\frac{dy_i^{(\lambda)}}{dy_i}| = \prod_{i=1}^ny_i^{\lambda - 1} J=i=1ndyidyi(λ)=i=1nyiλ1

λ \lambda λ固定, J J J是不依赖 β , σ 2 \beta,\sigma^2 β,σ2的常数。

求得 β , σ 2 \beta,\sigma^2 β,σ2的最大似然估计为:

β ^ = ( X ′ X ) − 1 X ′ y ( λ ) \hat{\beta} = (X'X)^{-1}X'y^{(\lambda)} β^=(XX)1Xy(λ)

σ ^ 2 = 1 n y ( λ ) ′ ( I − X ( X ′ X ) − 1 X ′ ) y ( λ ) = 1 n S S E ( λ , y ( λ ) ) , S S E ( λ , y ( λ ) ) = y ( λ ) ′ ( I − X ( X ′ X ) − 1 X ′ ) y ( λ ) \hat{\sigma}^2 = \frac{1}{n}y^{(\lambda)'}(I - X(X'X)^{-1}X')y^{(\lambda)} = \frac{1}{n}SSE(\lambda, y^{(\lambda)}), SSE(\lambda, y^{(\lambda)}) = y^{(\lambda)'}(I - X(X'X)^{-1}X')y^{(\lambda)} σ^2=n1y(λ)(IX(XX)1X)y(λ)=n1SSE(λ,y(λ)),SSE(λ,y(λ))=y(λ)(IX(XX)1X)y(λ)

对应的似然函数为:

L ( β ^ , σ ^ 2 ) = ( 2 π e S S E ( λ , y ( λ ) ) n ) − n 2 ∗ J L(\hat{\beta}, \hat{\sigma}^2) = (2\pi e \frac{SSE(\lambda, y^{(\lambda)})}{n})^{-\frac{n}{2}} * J L(β^,σ^2)=(2πenSSE(λ,y(λ)))2nJ

l n L ( β ^ , σ ^ 2 ) = − n 2 l n ( S S E ( λ , y λ ) ) + l n ( J ) = − n 2 l n ( S S E ( λ , z ( λ ) ) ) lnL(\hat{\beta},\hat{\sigma}^2) = -\frac{n}{2}ln(SSE(\lambda,y^{\lambda})) + ln(J) = -\frac{n}{2}ln(SSE(\lambda, z^{(\lambda)})) lnL(β^,σ^2)=2nln(SSE(λ,yλ)+ln(J=2nln(SSE(λ,z(λ)))

z ( λ ) = y ( λ ) J z^{(\lambda)} = \frac{y^{(\lambda)}}{\bold{J}} z(λ)=Jy(λ)

为了找出 λ \lambda λ的极大似然估计,使得 S S E ( λ , z ( λ ) ) SSE(\lambda,z^{(\lambda)}) SSE(λ,z(λ))达到最小即可。

http://www.lryc.cn/news/101508.html

相关文章:

  • Linux wc命令用于统计文件的行数,字符数,字节数
  • Python读取多个栅格文件并提取像元的各波段时间序列数据与变化值
  • Linux 之 wget curl
  • AngularJS 和 React区别
  • 【Solr】Solr搜索引擎使用
  • 一起学算法(选择排序篇)
  • 智能体的主观和能动
  • AB 压力测试
  • 多旋翼物流无人机节能轨迹规划(Python代码实现)
  • Vue通过指令 命令将打包好的dist静态文件上传到腾讯云存储桶 (保存原有存储目录结构)
  • Linux 新硬盘分区,挂载
  • Stable Diffusion 开源模型 SDXL 1.0 发布
  • NoSQL--------- Redis配置与优化
  • Ubuntu中关闭防火墙
  • java-马踏棋盘
  • 系统架构设计师-软件架构设计(4)
  • 51单片机--AD/DA
  • 网络安全-防御需知
  • C#百万数据处理
  • windows端口占用
  • 如何理解Diffusion
  • 自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):使用少量示例和响应流式传输]
  • Java在线OJ项目(三)、前后端交互API模块
  • 项目——负载均衡在线OJ
  • idea连接远程服务器上传war包文件
  • 使用PyGWalker可视化分析表格型数据
  • Visual C++中的虚函数和纯虚函数(以外观设计模式为例)
  • 电子元器件选型与实战应用—01 电阻选型
  • javascript 模板引擎
  • 【数据结构】带头+双向+循环链表(DList)(增、删、查、改)详解