当前位置: 首页 > news >正文

Python读取多个栅格文件并提取像元的各波段时间序列数据与变化值

  本文介绍基于Python语言,读取文件夹下大量栅格遥感影像文件,并基于给定的一个像元,提取该像元对应的全部遥感影像文件中,指定多个波段的数值;修改其中不在给定范围内的异常值,并计算像元数值在每一景遥感影像中变化的差值;最终将这些数据保存为一个新的Excel表格文件的方法。

  首先,我们来看一下本文需要具体实现的需求。现在有一个文件夹,如下图所示;其中,存放了大量的遥感影像文件,且每一景遥感影像都是同一个空间位置、不同成像时间对应的遥感影像,因此其空间参考信息、栅格的行数与列数等都是一致的。此外,每一景遥感影像都具有5个不同的波段。

  我们现在希望,给定一个像元(也就是给定了这个像元在遥感影像中的行号与列号),提取出在指定的波段中(我们这里就提取全部的5个波段),该像元对应的每一景遥感影像的数值(也就是提取了该像元在每一景遥感影像、每一个波段的数值);随后,将提取到的大于1的数值修改为1,并计算像素值在每一景遥感影像中数值的差值;最后,将提取到的数据保存为一个Excel表格文件。

  明确了需求,我们就可以撰写代码;具体如下。

# -*- coding: utf-8 -*-
"""
Created on Thu Jul 27 11:25:55 2023@author: fkxxgis
"""import os
import pandas as pd
from osgeo import gdaldef extract_pixel_time_series(input_folder, output_csv):tif_files = [file for file in os.listdir(input_folder) if file.endswith('.tif')]target_row = 495target_col = 60time_series_df = pd.DataFrame()for tif_file in tif_files:file_path = os.path.join(input_folder, tif_file)dataset = gdal.Open(file_path)for band in range(dataset.RasterCount):band_data = dataset.GetRasterBand(band + 1).ReadAsArray()pixel_value = band_data[target_row, target_col]date = tif_file[10: 24]time_series_df.at[date, f'Band_{band + 1}'] = pixel_valuedataset = Nonefor index in range(len(time_series_df.columns)):time_series_df = time_series_df.apply(lambda x: x.clip(upper = 1))new_col_name = time_series_df.columns[index] + "_diff"time_series_df[new_col_name] = time_series_df.iloc[:, index].diff()time_series_df.to_csv(output_csv)# 示例用法
input_folder = r"E:\01_Reflectivity\FiveBands"
output_csv = r"E:\01_Reflectivity\Data.csv"
extract_pixel_time_series(input_folder, output_csv)

  首先,我们需要导入必要的模块和库。其中os用于操作文件和文件夹,pandas用于处理数据和创建DataFrame格式数据,而gdal则用于读取栅格数据;关于gdal库的配置方法,大家可以参考文章Anaconda环境GDAL库基于whl文件的配置方法(https://blog.csdn.net/zhebushibiaoshifu/article/details/128320388)。

  随后,我们对extract_pixel_time_series这个函数加以定义。这个函数接收两个参数input_folderoutput_csv,分别表示存储栅格数据的文件夹路径和输出的Excel文件的路径。随后,列出input_folder文件夹下所有以.tif结尾的文件,并存储在列表中。其次,循环遍历每个栅格文件,构建完整的文件路径,用于后面的数据读取,并使用gdal.Open()打开栅格文件,获取数据集对象。

  接下来,通过循环遍历每个波段。读取当前波段的数据,并存储在band_data变量中。随后基于我们给定的像元位置,提取目标像元的数值(位置就是这个[target_row, target_col])。此外,为了使得我们保存结果时可以记录每一个数值对应的成像日期,因此需要从文件名中提取日期,并存储在date变量中。

  接下来,通过time_series_df.at[date, f'Band_{band + 1}'],将像元值存储在DataFrame中,行索引为日期,列名为Band_1Band_2等;随后,将数据集对象dataset设为None,释放内存资源。

  接下来,我们将大于1的数值加以处理,并计算每个波段随时间变化的数值之差。遍历time_series_df的每一列,并对于每一列使用clip(upper=1)将超过1的值截断为1;随后,为每一列创建新列,列名为原列名加上_diff,存储该列差值。

  最后,我们将处理后的时间序列数据保存为Excel表格文件即可。

  运行上述代码,我们即可获得多个遥感影像文件中,给定像元位置处,像元数值的时间变化序列,并可以获得其变化值。

  至此,大功告成。

欢迎关注:疯狂学习GIS

http://www.lryc.cn/news/101506.html

相关文章:

  • Linux 之 wget curl
  • AngularJS 和 React区别
  • 【Solr】Solr搜索引擎使用
  • 一起学算法(选择排序篇)
  • 智能体的主观和能动
  • AB 压力测试
  • 多旋翼物流无人机节能轨迹规划(Python代码实现)
  • Vue通过指令 命令将打包好的dist静态文件上传到腾讯云存储桶 (保存原有存储目录结构)
  • Linux 新硬盘分区,挂载
  • Stable Diffusion 开源模型 SDXL 1.0 发布
  • NoSQL--------- Redis配置与优化
  • Ubuntu中关闭防火墙
  • java-马踏棋盘
  • 系统架构设计师-软件架构设计(4)
  • 51单片机--AD/DA
  • 网络安全-防御需知
  • C#百万数据处理
  • windows端口占用
  • 如何理解Diffusion
  • 自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):使用少量示例和响应流式传输]
  • Java在线OJ项目(三)、前后端交互API模块
  • 项目——负载均衡在线OJ
  • idea连接远程服务器上传war包文件
  • 使用PyGWalker可视化分析表格型数据
  • Visual C++中的虚函数和纯虚函数(以外观设计模式为例)
  • 电子元器件选型与实战应用—01 电阻选型
  • javascript 模板引擎
  • 【数据结构】带头+双向+循环链表(DList)(增、删、查、改)详解
  • 接口自动化测试平台
  • 【物联网】微信小程序接入阿里云物联网平台