当前位置: 首页 > article >正文

实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.11 R语言解题

本文是实验设计与分析(第6版,Montgomery著,傅珏生译) 第5章析因设计引导5.7节思考题5.11 R语言解题。主要涉及方差分析,正态假设检验,残差分析,交互作用图。

dataframe<-data.frame(

density=c(570,565,583,528,547,521,1063,1080,1043,988,1026,1004,565,510,590,526,538,532),

Temperature=gl(3,6,18),

position=gl(2,3,18))

summary (dataframe)

dataframe.aov2 <- aov(density~position+Temperature,data=dataframe)

summary (dataframe.aov2)

> summary (dataframe.aov2)

            Df Sum Sq Mean Sq F value   Pr(>F)   

position     1   7160    7160    16.2  0.00125 **

Temperature  2 945342  472671  1069.3 4.92e-16 ***

Residuals   14   6189     442                    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

with(dataframe,interaction.plot(Temperature,position,density,type="b",pch=19,fixed=T,xlab="Temperature (°F)",ylab="density"))

plot.design(density~position*Temperature,data=dataframe)

fit <-lm(density~position+Temperature,data=dataframe)

anova(fit)

> anova(fit)

Analysis of Variance Table

Response: density

            Df Sum Sq Mean Sq  F value    Pr(>F)   

position     1   7160    7160   16.197  0.001254 **

Temperature  2 945342  472671 1069.257 4.924e-16 ***

Residuals   14   6189     442                      

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

summary(fit)

> summary(fit)

Call:

lm(formula = density ~ position + Temperature, data = dataframe)

Residuals:

    Min      1Q  Median      3Q     Max

-53.444  -9.361   2.000  11.639  26.556

Coefficients:

             Estimate Std. Error t value Pr(>|t|)   

(Intercept)   572.278      9.911  57.740  < 2e-16 ***

position2     -39.889      9.911  -4.025  0.00125 **

Temperature2  481.667     12.139  39.680 8.69e-16 ***

Temperature3   -8.833     12.139  -0.728  0.47880   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.03 on 14 degrees of freedom

Multiple R-squared:  0.9935,    Adjusted R-squared:  0.9922

F-statistic: 718.2 on 3 and 14 DF,  p-value: 1.464e-15

par(mfrow=c(2,2))

plot(fit)

par(mfrow=c(2,2))

plot(as.numeric(dataframe$position), fit$residuals, xlab="position", ylab="Residuals", type="p", pch=16)

plot(as.numeric(dataframe$Temperature), fit$residuals, xlab="Temperature", ylab="Residuals", pch=16)

http://www.lryc.cn/news/2394367.html

相关文章:

  • c++复习_第一天(引用+小众考点)
  • 《软件工程》实战— 在线教育平台开发
  • Unity中的JsonManager
  • 《AI大模型的开源与性能优化:DeepSeek R1的启示》
  • Java-代码段-http接口调用自身服务中的其他http接口(mock)-并建立socket连接发送和接收报文实例
  • iOS 使用CocoaPods 添加Alamofire 提示错误的问题
  • Python打卡训练营学习记录Day41
  • 单链表反序实现
  • C++深入类与对象
  • 机器学习算法04:SVC 算法(向量机分类)
  • Fragment事务commit与commitNow区别
  • LVS-DR高可用-Keepalived
  • 阿里云服务器邮件发送失败(dail tcp xxxx:25: i/o timeout)因为阿里云默认禁用 25 端口
  • 力扣HOT100之动态规划:322. 零钱兑换
  • 电商售后服务系统与其他系统集成:实现售后流程自动化
  • kafka学习笔记(三、消费者Consumer使用教程——消费性能多线程提升思考)
  • mongodb删除字段
  • [JVM] JVM内存调优
  • Liunx部署ES单机集群
  • 秒出PPT正式改名秒出AI,开启AI赋能新体验!
  • Unity中的AudioManager
  • VM改MAC电脑密码(截图)
  • SpringBoot+Vue+微信小程序校园自助打印系统
  • 【论文精读】2024 CVPR--Upscale-A-Video现实世界视频超分辨率(RealWorld VSR)
  • 学术合作交流
  • 【线上故障排查】Redis缓存与数据库中数据不一致问题的排查与同步策略优化
  • 【Git命令】
  • 【LUT技术专题】图像自适应3DLUT
  • 德拜温度热容推导
  • 扫一扫的时候会经历哪些事