当前位置: 首页 > news >正文

Safetensors,高效安全易用的深度学习新工具

大家好,本文将介绍一种为深度学习应用提供速度、效率、跨平台兼容性、用户友好性和安全性的新工具。

Safetensors简介

Hugging Face开发了一种名为Safetensors的新序列化格式,旨在简化和精简大型复杂张量的存储和加载。张量是深度学习中使用的主要数据结构,其大小会给效率带来挑战。

Safetensors结合使用高效的序列化和压缩算法来减少大型张量的大小,使其比pickle等其他序列化格式更快、更高效。这意味着,与传统PyTorch序列化格式pytorch_model.binmodel.safetensors相比,Safetensors在CPU上的速度快76.6倍,在GPU上的速度快2倍。

 使用Safetensors的好处

Safetensors具有简单直观的API,可以在Python中序列化和反序列化张量。这意味着开发人员可以专注于搭建深度学习模型,而不必在序列化和反序列化上花费时间。

可以用Python进行序列化,并方便地使用各种编程语言和平台(如C++、Java和JavaScript)加载生成的文件,这样就可以实现在不同的编程环境中无缝共享模型。

Safetensors针对速度进行了优化,可以高效处理大型张量的序列化和反序列化,因此它是使用大型语言模型的应用程序的绝佳选择。

它混合使用了有效的序列化和压缩算法,以减小大型张量的大小,与其他序列化格式(如pickle)相比,性能更快、更高效。

为了防止序列化张量在存储或传输过程中出现损坏,Safetensors使用了校验和机制。这保证了额外的安全性,确保存储在Safetensors中的所有数据都准确可靠。此外,它还能防止DOS攻击。

在使用多个节点或GPU的分布式环境中工作时,只在每个模型上加载部分张量是很有帮助的。BLOOM利用这种格式在8个 GPU上加载模型仅需45秒,而普通PyTorch加权则需要10分钟。

使用Safetensors

在本节中我们将介绍safetensors API,以及如何保存和加载张量文件。可以使用pip管理器安装safetensors

pip install safetensors

本文将使用Torch共享张量中的示例来搭建一个简单的神经网络,并使用PyTorch的safetensors.torch API保存模型。

from torch import nnclass Model(nn.Module):def __init__(self):super().__init__()self.a = nn.Linear(100, 100)self.b = self.adef forward(self, x):return self.b(self.a(x))model = Model()
print(model.state_dict())

正如所看到的,已经成功创建了模型。

OrderedDict([('a.weight', tensor([[-0.0913, 0.0470, -0.0209, ..., -0.0540, -0.0575, -0.0679], [ 0.0268, 0.0765, 0.0952, ..., -0.0616, 0.0146, -0.0343], [ 0.0216, 0.0444, -0.0347, ..., -0.0546, 0.0036, -0.0454], ...,

现在我们将通过提供model对象和文件名来保存模型,然后把保存的文件加载到使用nn.Module创建的model对象中。

from safetensors.torch import load_model, save_modelsave_model(model, "model.safetensors")load_model(model, "model.safetensors")
print(model.state_dict())
OrderedDict([('a.weight', tensor([[-0.0913, 0.0470, -0.0209, ..., -0.0540, -0.0575, -0.0679], [ 0.0268, 0.0765, 0.0952, ..., -0.0616, 0.0146, -0.0343], [ 0.0216, 0.0444, -0.0347, ..., -0.0546, 0.0036, -0.0454], ...,

在第二个示例中,我们将尝试保存使用torch.zeros创建的张量,为此将使用save_file函数。

import torch
from safetensors.torch import save_file, load_filetensors = {"weight1": torch.zeros((1024, 1024)),"weight2": torch.zeros((1024, 1024))
}
save_file(tensors, "new_model.safetensors")

为了加载张量,我们将使用load_file函数。

load_file("new_model.safetensors")
{'weight1': tensor([[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],...,[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.]]),'weight2': tensor([[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],...,[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.]])}

Safetensors API适用于Pytorch、Tensorflow、PaddlePaddle、Flax和Numpy,可以通过阅读Safetensors文档来了解它。

简而言之,Safetensors是一种存储深度学习应用中使用的大型张量的新方法。与其他技术相比,它具有更快、更高效和用户友好的特点,此外它还能确保数据的保密性和安全性,同时支持各种编程语言和平台。通过使用Safetensors,机器学习工程师可以优化时间,专注于开发更优秀的模型。

强烈推荐在项目中使用Safetensors,许多顶级AI公司,如Hugging Face、EleutherAI和StabilityAI,都在他们的项目中使用了Safetensors。

http://www.lryc.cn/news/99448.html

相关文章:

  • Unity 工具之 NuGetForUnity 包管理器,方便在 Unity 中的进行包管理的简单使用
  • 运算放大器(二):恒流源
  • 企业选择租用CRM还是一次性买断CRM?分别有哪些优势?
  • VBA_MF系列技术资料1-133
  • Android 项目架构
  • 【Linux】进程通信 — 管道
  • ROS 2 — 托管(生命周期)节点简介
  • vue2企业级项目(六)
  • OSPF的选路原则
  • 4.操作元素属性
  • uniapp 微信小程序:v-model双向绑定问题(自定义 props 名无效)
  • 【Lua学习笔记】Lua进阶——Table(3) 元表
  • AI编程常用工具 Jupyter Notebook
  • RocketMQ重复消费的解决方案::分布式锁直击面试!
  • 如何降低TCP在局域网环境下的数据传输延迟
  • 【LeetCode】78.子集
  • 认可功能介绍 - 技术声誉靠认可
  • EtherNet/IP转CAN网关can协议标准
  • 解决代理IP负载均衡与性能优化的双重挑战
  • 深度探索 Elasticsearch 8.X:function_score 参数解读与实战案例分析
  • 测牛学堂:软件测试之andorid app性能测试面试知识点总结(二)
  • 尚医通06:数据字典+EasyExcel+mongodb
  • 【前端知识】React 基础巩固(三十二)——Redux的三大原则、使用流程及实践
  • [NLP]使用Alpaca-Lora基于llama模型进行微调教程
  • Linux Shell 脚本编程学习之【第5章 文件的排序、合并与分割 (第四部分之cut命令) 】
  • php-golang-rpc jsonrpc和php客户端tivoka/tivoka包实践
  • flutter 打包iOS安装包
  • 二进制重排
  • 【Linux后端服务器开发】MAC地址与其他重要协议
  • WebGPU入门