当前位置: 首页 > news >正文

Langchain 的 Conversation summary memory

Langchain 的 Conversation summary memory

现在让我们看一下使用稍微复杂的内存类型 - ConversationSummaryMemory 。这种类型的记忆会随着时间的推移创建对话的摘要。这对于随着时间的推移压缩对话中的信息非常有用。对话摘要内存对发生的对话进行总结,并将当前摘要存储在内存中。然后可以使用该内存将迄今为止的对话摘要注入提示/链中。此内存对于较长的对话最有用,因为在提示中逐字保留过去的消息历史记录会占用太多令牌。

我们首先来探讨一下这种存储器的基本功能。

示例代码,

from langchain.memory import ConversationSummaryMemory, ChatMessageHistory
from langchain.llms import OpenAI
memory = ConversationSummaryMemory(llm=OpenAI(temperature=0))
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.load_memory_variables({})

输出结果,

    {'history': '\nThe human greets the AI, to which the AI responds.'}

我们还可以获取历史记录作为消息列表(如果您将其与聊天模型一起使用,这非常有用)。

memory = ConversationSummaryMemory(llm=OpenAI(temperature=0), return_messages=True)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.load_memory_variables({})

输出结果,

    {'history': [SystemMessage(content='\nThe human greets the AI, to which the AI responds.', additional_kwargs={})]}

我们也可以直接使用 predict_new_summary 方法。

messages = memory.chat_memory.messages
previous_summary = ""
memory.predict_new_summary(messages, previous_summary)

输出结果,

    '\nThe human greets the AI, to which the AI responds.'

Initializing with messages

如果您有此类之外的消息,您可以使用 ChatMessageHistory 轻松初始化该类。加载期间,将计算摘要。

示例代码,

history = ChatMessageHistory()
history.add_user_message("hi")
history.add_ai_message("hi there!")
memory = ConversationSummaryMemory.from_messages(llm=OpenAI(temperature=0), chat_memory=history, return_messages=True)
memory.buffer

输出结果,

    '\nThe human greets the AI, to which the AI responds with a friendly greeting.'

Using in a chain

让我们看一下在链中使用它的示例,再次设置 verbose=True 以便我们可以看到提示。

示例代码,

from langchain.llms import OpenAI
from langchain.chains import ConversationChain
llm = OpenAI(temperature=0)
conversation_with_summary = ConversationChain(llm=llm, memory=ConversationSummaryMemory(llm=OpenAI()),verbose=True
)
conversation_with_summary.predict(input="Hi, what's up?")

输出结果,

    > Entering new ConversationChain chain...Prompt after formatting:The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi, what's up?AI:> Finished chain." Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you?"

示例代码,

conversation_with_summary.predict(input="Tell me more about it!")

输出结果,

    > Entering new ConversationChain chain...Prompt after formatting:The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:The human greeted the AI and asked how it was doing. The AI replied that it was doing great and was currently helping a customer with a technical issue.Human: Tell me more about it!AI:> Finished chain." Sure! The customer is having trouble with their computer not connecting to the internet. I'm helping them troubleshoot the issue and figure out what the problem is. So far, we've tried resetting the router and checking the network settings, but the issue still persists. We're currently looking into other possible solutions."

示例代码,

conversation_with_summary.predict(input="Very cool -- what is the scope of the project?")

输出结果,

    > Entering new ConversationChain chain...Prompt after formatting:The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:The human greeted the AI and asked how it was doing. The AI replied that it was doing great and was currently helping a customer with a technical issue where their computer was not connecting to the internet. The AI was troubleshooting the issue and had already tried resetting the router and checking the network settings, but the issue still persisted and they were looking into other possible solutions.Human: Very cool -- what is the scope of the project?AI:> Finished chain." The scope of the project is to troubleshoot the customer's computer issue and find a solution that will allow them to connect to the internet. We are currently exploring different possibilities and have already tried resetting the router and checking the network settings, but the issue still persists."

完结!

http://www.lryc.cn/news/96226.html

相关文章:

  • Safari 查看 http 请求
  • kafka权限控制功能
  • 公司内部重要文件如何加密防止泄露?
  • C语言或Java-x型图案
  • FTP客户端登录报错:Login failed
  • Linux相关指令(上)
  • 电压放大器在管道缺陷检测中应用有哪些
  • NLP(六十二)HuggingFace中的Datasets使用
  • Windows下基于VSCode搭建C++开发环境(包含整合MinGW64、CMake的详细流程)
  • springboot+mybatis-plus+vue+element+vant2实现短视频网站,模拟西瓜视频移动端
  • MySQL学习-第二部分
  • TortoiseGit 入门指南17:使用子模块
  • 谷粒商城篇章5 ---- P173-P192 ---- 检索服务【分布式高级篇二】
  • N位分频器的实现
  • 华为OD真题--分苹果-带答案
  • 【前端实习评审】对小说详情模块更新的后端接口压力流程进行了人群优化
  • Factorization Machines(论文笔记)
  • Qt开发(5)——使用QTimer定时触发槽函数
  • 2023年JAVA最新面试题
  • (四)RabbitMQ高级特性(消费端限流、利用限流实现不公平分发、消息存活时间、优先级队列
  • Vue如何配置eslint
  • Elasticsearch查询文档
  • 面向对象编程:多态性的理论与实践
  • linux:filezilla root密码登陆
  • 在nginx上部署nuxt项目
  • 嵌入式linux通用spi驱动之spidev使用总结
  • 【Nodejs】Puppeteer\爬虫实践
  • Windows Active Directory密码同步
  • 安科瑞能源物联网以能源供应、能源管理、设备管理、能耗分析的能源流向为主线-安科瑞黄安南
  • FPGA设计时序分析一、时序路径