电子技术——分立CS和CE放大器的低频响应
电子技术——分立CS和CE放大器的低频响应
我们之前在学习放大器中从来没有关系过信号频率对放大器的影响,也就是说我们默认放大器具有无限的带宽,这当然不符合现实逻辑。为了说明这一点,我们使用下图:
上图描述了MOS或BJT分立电路放大器的频率响应特性。我们发现存在中间一段区域,无论信号的频率怎么变化,放大器的增益都是一个常数。一般的放大器都工作在此区间,我们称这个区域为 中频带 。一个好的放大器设计应该让中频带处于我们想放大的信号频率上。如果不是这样,则放大器就会造成失真,因为不同频率的信号放大的倍数不同。
上图还展示了当信号频率较小的时候,放大器的增益就会下降。这是因为此时的耦合和旁路电容不在对信号具有低阻抗,回忆一下电容的阻抗为 1/jωC1/ j \omega C1/jωC 若信号频率越小,则阻抗越大。我们称 fLf_LfL 为中频带的低频结束点,经常被定义为中频带增益的 −3dB-3dB−3dB 下降点。我们本节将会讨论分立CS和CE放大器的低频响应。而对于集成电路来说,我们不使用耦合和旁路电容而是直接耦合,因此 fL=0f_L = 0fL=0 ,如图:
无论是分立电路放大器还是IC放大器都会存在一个中频带的高频结束点 fHf_HfH ,经常被定义为中频带增益的 −3dB-3dB−3dB 下降点,这是因为BJT和MOS的内部电容效应。我们将在后几个节学习如何在T模型或是混合 π\piπ 模型中模型化内部电容效应。
则放大器的 带宽 定义为:
BW=fH−fLBW = f_H - f_L BW=fH−fL
一个对于放大器非常重要的特性是 增益-带宽积 定义为:
GB=∣AM∣BWGB = |A_M|BW GB=∣AM∣BW
增益-带宽积通常被用来权衡一个放大器的增益和带宽。
在本节我们探究分立CS和CE放大器的低频响应。
CS放大器
下图展示了一个典型的分立CS放大器的完整结构:
为了分析分立CS放大器在低频处的响应,我们使用下面的电路图进行研究:
上图中,我们将 VDDV_{DD}VDD 短路,并且将MOS使用T模型替代。为了计算 Vo/VsigV_o / V_{sig}Vo/Vsig 我们使用下面的链式模型:
VoVsig=VgVsig×IdVg×VoId\frac{V_o}{V_{sig}} = \frac{V_g}{V_{sig}} \times \frac{I_d}{V_g} \times \frac{V_o}{I_d} VsigVo=VsigVg×VgId×IdVo
这里 VgV_gVg 是栅极电压, IdI_dId 是漏极电流。我们发现 VgV_gVg 可以通过分压定律计算:
Vg=VsigRGRG+1sCC1+RsigV_g = V_{sig} \frac{R_G}{R_G + \frac{1}{sC_{C1}} + R_{sig}} Vg=VsigRG+sCC11+RsigRG
这里的 RGR_GRG 是CS的输入阻抗为:
RG=RG1∣∣RG2R_G = R_{G1} || R_{G2} RG=RG1∣∣RG2
而 sss 是拉普拉斯变换中的复频率,以后我们都使用 sss 表示复频率:
s=jωs = j \omega s=jω
则重新排列:
VgVsig=RGRG+Rsigss+1CC1(RG+Rsig)\frac{V_g}{V_{sig}} = \frac{R_G}{R_G + R_{sig}} \frac{s}{s + \frac{1}{C_{C1}(R_G + R_{sig})}} VsigVg=RG+RsigRGs+CC1(RG+Rsig)1s
因此,我们发现 CC1C_{C1}CC1 在信号从信号源到MOS的栅极引入了频率相关因子。我们知道这个因子是单时间常数电路中高通型传递函数,具有极点频率:
ωP1=1CC1(RG+Rsig)\omega_{P1} = \frac{1}{C_{C1}(R_G + R_{sig})} ωP1=CC1(RG+Rsig)1
当 s=0s=0s=0 的时候, CC1C_{C1}CC1 引入了零因子。这是很显然的,因为电容具有阻直流的性质,下图描述了函数 ss+ωP1\frac{s}{s + \omega_{P1}}s+ωP1s 的频率响应波德图:
继续我们的 IdI_dId 分析,因为 Id=IsI_d = I_sId=Is 后者可以通过电压比源极阻抗算出来:
Id=Is=Vg1gm+ZS=gmVgYSgm+YSI_d = I_s = \frac{V_g}{\frac{1}{g_m} + Z_S} = g_mV_g \frac{Y_S}{g_m + Y_S} Id=Is=gm1+ZSVg=gmVggm+YSYS
这里:
YS=1ZS=1RS+sCSY_S = \frac{1}{Z_S} = \frac{1}{R_S} + sC_S YS=ZS1=RS1+sCS
写出多项式分式的形式:
IdVg=gms+1CSRSs+gm+1/RSCS\frac{I_d}{V_g} = g_m \frac{s + \frac{1}{C_SR_S}}{s + \frac{g_m + 1/R_S}{C_S}} VgId=gms+CSgm+1/RSs+CSRS1
也就是说,旁路电容引入了极点频率:
ωP2=gm+1/RSCS\omega_{P2} = \frac{g_m + 1/R_S}{C_S} ωP2=CSgm+1/RS
以及一个零点:
sZ=−1CSRSs_Z = -\frac{1}{C_SR_S} sZ=−CSRS1
对应的零点频率为:
ωZ=1CSRS\omega_Z = \frac{1}{C_SR_S} ωZ=CSRS1
下图展示了这个传递函数的频率响应图像:
因为 gmg_mgm 很大,所以 ωP2>ωZ\omega_{P2} > \omega_ZωP2>ωZ 所以 ωP2\omega_{P2}ωP2 更加靠近中频带,对 ωL\omega_LωL 的影响比 ωZ\omega_ZωZ 大。
最后,计算:
VoId=−RDRLRD+RLss+1CC2(RD+RL)\frac{V_o}{I_d} = -\frac{R_DR_L}{R_D +R_L}\frac{s}{s + \frac{1}{C_{C2}(R_D+R_L)}} IdVo=−RD+RLRDRLs+CC2(RD+RL)1s
耦合电容 CC2C_{C2}CC2 引入极点频率:
ωP3=1CC2(RD+RL)\omega_{P3} = \frac{1}{C_{C2}(R_D+R_L)} ωP3=CC2(RD+RL)1
以及零点 s=0s=0s=0 (DC)。频率响应如下:
则整体低频响应函数为:
VoVsig=−RGRG+Rsiggm(RD∣∣RL)(ss+ωP1)(s+ωZs+ωP2)(ss+ωP3)\frac{V_o}{V_{sig}} = -\frac{R_G}{R_G + R_{sig}}g_m(R_D||R_L)(\frac{s}{s + \omega_{P1}})(\frac{s + \omega_Z}{s + \omega_{P2}})(\frac{s}{s + \omega_{P3}}) VsigVo=−RG+RsigRGgm(RD∣∣RL)(s+ωP1s)(s+ωP2s+ωZ)(s+ωP3s)
也就是:
VoVsig=AM(ss+ωP1)(s+ωZs+ωP2)(ss+ωP3)\frac{V_o}{V_{sig}} = A_M(\frac{s}{s + \omega_{P1}})(\frac{s + \omega_Z}{s + \omega_{P2}})(\frac{s}{s + \omega_{P3}}) VsigVo=AM(s+ωP1s)(s+ωP2s+ωZ)(s+ωP3s)
这里 AMA_MAM 为完美增益,即不考虑任何频率特性的增益系数,也是我们之前几章使用过的:
AM=−RGRG+Rsiggm(RD∣∣RL)A_M = -\frac{R_G}{R_G + R_{sig}}g_m(R_D||R_L) AM=−RG+RsigRGgm(RD∣∣RL)
当 s=jωs = j\omegas=jω 远大于 ωP1,ωP2,ωP3,ωZ\omega_{P1},\omega_{P2},\omega_{P3},\omega_ZωP1,ωP2,ωP3,ωZ 的时候,此时 Av≃AMA_v \simeq A_MAv≃AM 这个时候放大器进入中频带。
决定 3−dB3-dB3−dB 频率 fLf_LfL
有了上述推导出的公式,我们就可以确定CS放大器的中频带的低频结束点,当 ∣Vo/Vsig∣|V_o/V_{sig}|∣Vo/Vsig∣ 降至 ∣AM∣/2|A_M| / \sqrt{2}∣AM∣/2 的时候此时增益下降 3dB3dB3dB ,记为 fLf_LfL 。
有一个更简单的方式估算频率 fLf_LfL ,当所有的极点和零点分的足够开的时候,我们可以使用博德规则,整体博德图如下:
上图中,一般情况下都是 fP2f_{P2}fP2 最大。一个快速的估算方法为:若最高极点频率 fP2f_{P2}fP2 至少是最近的极点、零点频率 fP3f_{P3}fP3 的4倍(2个8度)。则 fLf_LfL 大约是最高极点频率。
fL=fP2f_L = f_{P2} fL=fP2
此时这种情况下,我们称最高极点频率为 主导极点 。
如果主导极点不存在,可以使用下面的表达式估算:
fL≃fP12+fP22+fP32−2fZ2f_L \simeq \sqrt{f_{P1}^2 + f_{P2}^2 + f_{P3}^2 - 2f_Z^2} fL≃fP12+fP22+fP32−2fZ2
通过观察决定极点和零点频率
因为在CS放大器中,各个电容是相互独立的,因此存在一个更简单的方法确定每一个电容的极点和零点频率。
首先是零点。传递函数的传输零点在 sss 使得 Vo=0V_o = 0Vo=0 的时候。在CS放大器中, CC1C_{C1}CC1 在 s=0s =0s=0 的时候具有无穷大阻抗因此引入了传输零点。
对于 CC2C_{C2}CC2 也具有相同的结论。然而,对于旁路电容 CSC_SCS 则具有不同的效果:根据定义传输零点在 sss 使得 ZS=∞Z_S = \inftyZS=∞ 的时候,此时 sZ=−1CSRSs_Z = -\frac{1}{C_SR_S}sZ=−CSRS1 。
对于极点,我们令 Vsig=0V_{sig} = 0Vsig=0 此时电路可以拆成下面三个电路:
我们发现每一个电路都是单时间常数电路,时间常数为每个电容的容值乘以从该电容看过去的阻值,其对应的极点频率正好的每一个单时间常数的倒数。
耦合电容和旁路电容的选值
我们现在解决如何选择三个电容的容值,我们的最终目标是将 fLf_LfL 设定在我们想要的值上同时最小化三个电容的容值。因为从 CSC_SCS 看过去的阻值 1gm∣∣RS\frac{1}{g_m} || R_Sgm1∣∣RS 是三个里面最小的,总容抗可以通过选择 CSC_SCS 来提供一个最高的极点频率来最小化,也就是令 fP2=fLf_{P2} = f_LfP2=fL 。之后我们决定后两个极点频率,都是小于 fP2f_{P2}fP2 5到10倍的。然而,fP1f_{P1}fP1 和 fP3f_{P3}fP3 也不能设置的太小,因为这需要更大的 CC1,CC2C_{C1},C_{C2}CC1,CC2 。
短路时间常数法
在一些电路中,例如我们即将要讨论的CE放大器电路,电容并不是相互独立的,此时决定极点频率是比较困难的。幸好,存在一个简单的方法用来估算 fLf_LfL ,这个方法不需要计算极点频率。尽管这个方法需要建立在存在一个主导极点频率的前提下,但是在前提不是那么严格的情况下也能获得不错的结果。方法是:
- 令输入信号源 Vsig=0V_{sig} = 0Vsig=0 。
- 依次考虑每一个电容。就是说,当考虑电容 CiC_iCi 的时候,将其他电容看成是容值无穷大的电容,即短路状态。
- 对于每一个电容,计算从这个电容看过去的总阻值 RiR_iRi 这可以通过戴维南定理计算。
- 则 fL=∑i=1n1CiRif_L = \sum_{i = 1}^n \frac{1}{C_i R_i}fL=∑i=1nCiRi1
这个方法揭示了每个电容对 fLf_LfL 的贡献。
CE放大器
下图展示了一个完整的CE放大器的原理图:
为了分析低频响应,我们使用下面的等效电路:
我们发现,因为存在有限的基极电流,电容 CC1C_{C1}CC1 和 CC2C_{C2}CC2 不是相互独立的。也就是说,不像CS放大器,每一个极点频率都和这两个电容有关,这给我们设计电路造成了不小的困难。因此,我们不想计算极点频率,而是转手使用短路时间常数法。
将信号输入源置地,然后依次考虑每个电容,如下图:
所有的时间常数我们都已经标在图中,因此估算的 fLf_LfL 为:
fL=12π[1CC1RC1+1CERE+1CC2RC2]f_L = \frac{1}{2 \pi}[\frac{1}{C_{C1} R_{C1}} + \frac{1}{C_E R_E} + \frac{1}{C_{C2} R_{C2}}] fL=2π1[CC1RC11+CERE1+CC2RC21]
这个式子揭示了每个电容对 fLf_LfL 的贡献。也就是具有最小时间常数的对 fLf_LfL 的贡献最大,换句话说,就是 CEC_ECE 贡献最大,因此 CEC_ECE 是我们的主导极点频率。通常计算我们都假设 CEC_ECE 对 fLf_LfL 贡献 80%80\%80% 而其他两项贡献 20%20\%20% 。