当前位置: 首页 > news >正文

【动态规划】简单多状态

文章目录

  • 动态规划(简单多状态)
    • 1. 按摩师
    • 2. 打家劫舍 ||
    • 3. 删除并获得点数
    • 4. 粉刷房子
    • 5. 最佳买卖股票时机含冷冻期
    • 6. 买卖股票的最佳时机含手续费
    • 7. 买卖股票的最佳时机 |||
    • 8. 买卖股票的最佳时机 IV

动态规划(简单多状态)

1. 按摩师

题目链接

  1. 状态表示

    dp[i]表示到i位置的时候预约的最大时长。但是这个题目我们可以选择接或不接。因此可以继续划分为两个子状态:

    • f[i]表示:到i位置时接受的最大时长
    • g[i]表示:到i位置时不接受的最大时长
  2. 状态转移方程

    2vu4cjw7da-1690362953455.png

  3. 初始化

    因为这个题目比较简单,所以不需要使用虚拟节点的方法,初始化是为了后面填表的时候不越界

    f[0] = nums[0], g[0] = 0

  4. 填表

    从左到右

  5. 返回值

    接受最后一个或者不接受的最大值

AC代码:

class Solution 
{
public:int massage(vector<int>& nums) {int n = nums.size();if (n == 0) return 0;vector<int> f(n);auto g = f;f[0] = nums[0], g[0] = 0;for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[n - 1], g[n - 1]);}
};

2. 打家劫舍 ||

题目链接

分析:

由于房间是连续的,也就是一个环,因此可以分类讨论:

  • 偷第一个时,第二个和最后一个不能偷
  • 不偷第一个,可以偷第二个和最后一个

因此只需要两种情况的最大值就可以

  1. 状态表示

    dp[i]表示偷到i时的最大金额,但是依然可以划分为两种情况偷或不偷

    f[i]表示偷i时的最大金额

    g[i]表示不偷i时的最大金额

  2. 状态转移方程

    qx81yjpg3g-1690364303443.png

  3. 初始化

    保证后续的填表不越界

  4. 填表

    从左到右,两个一起填

  5. 返回值

    最大值

AC代码:

class Solution 
{
public:int rob(vector<int>& nums) {int x = 0, y = 0;int n = nums.size();x += nums[0];x += recursion(2, n - 2, nums);y += recursion(1, n - 1, nums);return max(x, y);}int recursion(int left, int right, vector<int> &v){if (left > right) return 0;int n = v.size();vector<int> f(n);auto g = f;f[left] = v[left]; // 初始化for (int i = left + 1; i <= right; i++){f[i] = g[i - 1] + v[i];g[i] = max(g[i - 1], f[i - 1]);}return max(f[right], g[right]);}
};

3. 删除并获得点数

题目链接

分析:我们把所有数字的点数之和,放到一个数组当中,在进行一次打家劫舍就可以了

把原数组转换成一个新数组,新数组的下标i所对应的值为原数组的元素i在原数组中数字的总和,比如原数组[2, 2, 3, 3, 3, 4],转换为新数组就是[0, 0, 4, 9, 4]。在新数组中,下标0和1表示在原数组中没有0和1这两个数,新数组下标2的值是4,表示在原数组中,所有2的总和是4。转换的目的就是可以从新数组中得到删除nums[i]而得到的点数,也就是可以打劫的金额。因为删除nums[i]后,还要删除nums[i] + 1nums[i] - 1,在新数组中就意味着不能取相邻的元素,不能取相邻的元素和打家劫舍也是一样的。接下来就可以使用打家劫舍的方式解答了

AC代码:

class Solution 
{
public:const int N = 10001;int deleteAndEarn(vector<int>& nums) {vector<int> arr(N);for (auto e : nums) arr[e] += e;vector<int> g(N);auto f = g;for (int i = 1; i < N; i++){f[i] = g[i - 1] + arr[i];g[i] = max(g[i - 1], f[i - 1]);}return max(g[N - 1], f[N - 1]);}
};

4. 粉刷房子

题目链接

  1. 状态表示

    dp[i]表示到i时,所需的最少费用。但是到i的时候可以有三种情况我们需要分三个子状态

    dp[i][0], dp[i][1], dp[i][2]

  2. 状态转移方程

    wrmwgl7sbc-1690365960472.png

  3. 初始化

    采用虚拟节点的方式

  4. 填表

  5. 返回值

    返回三个表中的最小值

AC代码:

class Solution 
{
public:int minCost(vector<vector<int>>& costs) {// 0: 红色 1:蓝色 2:绿色int n = costs.size();vector<vector<int>> dp(n + 1, vector<int>(3));for (int i = 1; i <= n; i++){dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i - 1][2];}int ret = INT_MAX;for (int i = 0; i < 3; i++){ret = min(ret, dp[n][i]);}return ret;}
};

5. 最佳买卖股票时机含冷冻期

题目链接

  1. 状态表示

    dp[i]表示到i位置时的最大利润,但是到达i位置的时候仍然有3种子状态

    • dp[i][0],表示i过后处于买入状态
    • dp[i][1], 表示i过后处于可交易状态
    • dp[i][2],表示i过后处于冷冻期状态
  2. 状态转移方程

    像这种状态之间可以相互转换的,我们可以采用如下方法分析:

    bh40p1zbcb-1690367957450.png

  3. 初始化

    dp[0][0] = -prices[0], dp[0][1] = 0, dp[0][2] = 0

  4. 填表

    三张表同时填

  5. 返回值

    返回三中状态最后的最大值

AC代码:

class Solution 
{
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(3));dp[0][0] = -prices[0];for (int i = 1; i < n; i++){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);dp[i][2] = dp[i - 1][0] + prices[i];}return max(max(dp[n - 1][0], dp[n - 1][1]), dp[n - 1][2]);}
};

6. 买卖股票的最佳时机含手续费

题目链接

  1. 状态表示

    dp[i]表示到i位置的时候,最大的利润但是到i位置的时候是有两种状态的

    dp[i][0]:表示是买入状态

    dp[i][1]表示卖出状态

  2. 状态转移方程

    ogyovzrz17-1690372796443.png

  3. 初始化

    刚开始如果是买入状态dp[0][0] = -prices[0]

  4. 填表

  5. 返回值

AC代码:

class Solution 
{
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(2));dp[0][0] = -prices[0];for (int i = 1; i < n; i++){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);}return max(dp[n - 1][0], dp[n - 1][1]);}
};

7. 买卖股票的最佳时机 |||

题目链接

  1. 状态表示

    dp[i]表示到i位置的最大利润,但是还分为几个状态

    f[i][j]表示到i是第j次买入的最大利润

    g[i][j]表示到i是第j次买入的最大利润

  2. 状态转移方程

    zrwwmb104n-1690374918443.png

  3. 初始化

    f[0][0] = -prices[0], g[0][0] = 0

  4. 填表

    从上往下,每一行从左到右

  5. 返回值

    卖出状态最后的几个中的最大值

AC代码:

class Solution 
{
public:const int N = 0x3f3f3f3f;int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(3, -N));auto g = f;f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){for (int j = 0; j < 3; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j - 1 >= 0) g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}int ret = 0;for (int i = 0; i < 3; i++){ret = max(ret, g[n - 1][i]);}return ret;}
};

8. 买卖股票的最佳时机 IV

题目链接

  1. 状态表示

    还是分为两个子状态

    f[i][j]表示到i位置买入状态第j次买股票的最大利润

    g[i][j]表示到i位置卖出状态第j次买股票的最大利润

  2. 状态转移方程

    image-20230726205442099

  3. 初始化

    f[0][0] = -prices[0], g[0][0] = 0

  4. 填表

    从上到下,从左到右

  5. 返回值

    返回所有行的最大值

AC代码:

class Solution {
public:const int N = 0x3f3f3f3f;int maxProfit(int k, vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(k + 1, -N));auto g = f;f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){for (int j = 0; j <= k; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j - 1 >= 0) g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}int ret = 0;for (int i = 0; i <= k; i++){ret = max(ret, g[n - 1][i]);}return ret;}
};
http://www.lryc.cn/news/95736.html

相关文章:

  • 科技资讯|苹果计划本月推出Vision Pro头显开发套件,电池有重大更新
  • k8s 将pod节点上的文件拷贝到本地
  • Git简介与工作原理:了解Git的基本概念、版本控制系统和分布式版本控制的工作原理
  • java篇 类的进阶0x02:方法重载
  • Android11 相机拍照权限,以及解决resolveActivity返回null
  • MAXENT模型的生物多样性教程
  • CISA学习笔记-第一章、信息系统审计过程
  • 回调函数的使用:案例一:c语言简单信号与槽机制。
  • python matplotlib库 设置字体字号等
  • 【MySQL】SQL性能分析 (七)
  • 超越想象的GPT医疗 20230723
  • 【N32L40X】学习笔记03-gpio输出库
  • WebClient,HTTP Interface远程调用阿里云API
  • 飞书ChatGPT机器人 – 打造智能问答助手实现无障碍交流
  • React、Vue框架如何实现组件更新,原理是什么?
  • 常见面试题之设计模式--策略模式
  • redis多key问题
  • kafka第三课-可视化工具、生产环境问题总结以及性能优化
  • 2_Apollo4BlueLite中断控制器NVIC
  • WAIC2023:图像内容安全黑科技助力可信AI发展
  • 微信小程序quickstartFunctions中云函数的应用
  • Go学习 2、程序结构
  • SpringBoot整合JavaMail
  • Spring6——入门
  • 【计算机视觉 | 目标检测 | 图像分割】arxiv 计算机视觉关于目标检测和图像分割的学术速递(7 月 17 日论文合集)
  • 为什么需要GP(Global Platform)认证?
  • eclipse 格式化代码 快捷键
  • 深入探索Socks5代理与网络安全
  • 【NLP】如何使用Hugging-Face-Pipelines?
  • 网络安全(黑客)自学笔记