当前位置: 首页 > news >正文

PyTorch训练RNN, GRU, LSTM:手写数字识别

文章目录

    • pytorch 神经网络训练demo
    • Result
    • 参考来源

pytorch 神经网络训练demo

数据集:MNIST

该数据集的内容是手写数字识别,其分为两部分,分别含有60000张训练图片和10000张测试图片

在这里插入图片描述
图片来源:https://tensornews.cn/mnist_intro/

神经网络:RNN, GRU, LSTM

# Imports
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# Hyperparameters
input_size = 28
sequence_length = 28
num_layers = 2
hidden_size = 256
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 2# Create a RNN
class RNN(nn.Module):def __init__(self, input_size, hidden_size, num_layers, num_classes):super(RNN, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size*sequence_length, num_classes) # fully connecteddef forward(self, x):h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)# Forward Propout, _ = self.rnn(x, h0)out = out.reshape(out.shape[0], -1)out = self.fc(out)return out# Create a GRU
class RNN_GRU(nn.Module):def __init__(self, input_size, hidden_size, num_layers, num_classes):super(RNN_GRU, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size*sequence_length, num_classes) # fully connecteddef forward(self, x):h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)# Forward Propout, _ = self.gru(x, h0)out = out.reshape(out.shape[0], -1)out = self.fc(out)return out# Create a LSTM
class RNN_LSTM(nn.Module):def __init__(self, input_size, hidden_size, num_layers, num_classes):super(RNN_LSTM, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size*sequence_length, num_classes) # fully connecteddef forward(self, x):h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)# Forward Propout, _ = self.lstm(x, (h0, c0))out = out.reshape(out.shape[0], -1)out = self.fc(out)return out# Load data
train_dataset = datasets.MNIST(root='dataset/', train=True, transform=transforms.ToTensor(),download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='dataset/', train=False, transform=transforms.ToTensor(),download=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)# Initialize network 选择一个即可
model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)
# model = RNN_GRU(input_size, hidden_size, num_layers, num_classes).to(device)
# model = RNN_LSTM(input_size, hidden_size, num_layers, num_classes).to(device)# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)# Train network
for epoch in range(num_epochs):# data: images, targets: labelsfor batch_idx, (data, targets) in enumerate(train_loader):# Get data to cuda if possibledata = data.to(device).squeeze(1) # 删除一个张量中所有维数为1的维度 (N, 1, 28, 28) -> (N, 28, 28)targets = targets.to(device)# forwardscores = model(data) # 64*10loss = criterion(scores, targets)# backwardoptimizer.zero_grad()loss.backward()# gradient descent or adam stepoptimizer.step()# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):if loader.dataset.train:print("Checking accuracy on training data")else:print("Checking accuracy on test data")num_correct = 0num_samples = 0model.eval()with torch.no_grad(): # 不计算梯度for x, y in loader:x = x.to(device).squeeze(1)y = y.to(device)# x = x.reshape(x.shape[0], -1) # 64*784scores = model(x)# 64*10_, predictions = scores.max(dim=1) #dim=1,表示对每行取最大值,每行代表一个样本。num_correct += (predictions == y).sum()num_samples += predictions.size(0) # 64print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}%')model.train()check_accuracy(train_loader, model)
check_accuracy(test_loader, model)

Result

RNN Result
Checking accuracy on training data
Got 57926 / 60000 with accuracy 96.54%
Checking accuracy on test data
Got 9640 / 10000 with accuracy 96.40%GRU Result
Checking accuracy on training data
Got 59058 / 60000 with accuracy 98.43%
Checking accuracy on test data
Got 9841 / 10000 with accuracy 98.41%LSTM Result
Checking accuracy on training data
Got 59248 / 60000 with accuracy 98.75%
Checking accuracy on test data
Got 9849 / 10000 with accuracy 98.49%

参考来源

【1】https://www.youtube.com/watch?v=Gl2WXLIMvKA&list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vz&index=5

http://www.lryc.cn/news/95092.html

相关文章:

  • 基于深度学习的高精度道路瑕疵检测系统(PyTorch+Pyside6+YOLOv5模型)
  • 【裸辞转行】是告别,也是新的开始
  • 了解交换机接口的链路类型(access、trunk、hybrid)
  • Android系统启动流程分析
  • 如何在Ubuntu上安装OpenneBula
  • 解决MySQL中分页查询时多页有重复数据,实际只有一条数据的问题
  • 【数据结构】时间复杂度---OJ练习题
  • 京东自动化功能之商品信息监控是否有库存
  • 【SwitchyOmega】SwitchyOmega 安装及使用
  • CentOS5678 repo源 地址 阿里云开源镜像站
  • 【LLM】Langchain使用[二](模型链)
  • 简单机器学习工程化过程
  • 【MongoDB】SpringBoot整合MongoDB
  • 关于游戏引擎(godot)对齐音乐bpm的技术
  • 【Go】实现一个代理Kerberos环境部分组件控制台的Web服务
  • Spring Security 6.x 系列【63】扩展篇之匿名认证
  • 供应链管理系统有哪些?
  • 如何在PADS Logic中查找器件
  • Android 生成pdf文件
  • Kafka 入门到起飞 - 生产者发送消息流程解析
  • 基于单片机智能台灯坐姿矫正器视力保护器的设计与实现
  • 欧姆龙以太网模块如何设置ip连接 Kepware opc步骤
  • PLEX如何搭建个人局域网的视频网站
  • java学习02
  • libcurl库使用实例
  • 大数据存储架构详解:数据仓库、数据集市、数据湖、数据网格、湖仓一体
  • ESP32(MicroPython) 网页控制五自由度机械臂
  • 前端笔记_OAuth规则机制下实现个人站点接入qq三方登录
  • huggingface新作品:快速和简便的训练模型
  • 利用鸿鹄优化共享储能的SCADA 系统功能,赋能用户数据自助分析