当前位置: 首页 > news >正文

【论文阅读】Twin neural network regression is a semi- supervised regression algorithm

论文下载
GitHub
bib:

@ARTICLE{,title 		= {Twin neural network regression is a semi- supervised regression algorithm},author 		= {Sebastian J Wetzel and Roger G Melko and Isaac Tamblyn},journal 	= {Machine Learning: Science and Technology},year 		= {2022},volume 		= {3},number 		= {4},pages 	    = {045007},doi         = {10.1088/2632-2153/ac9885}
}

1. 摘要

Twin neural network regression (TNNR) is trained to predict differences between the target values of two different data points rather than the targets themselves.

TNNR是作者以前的工作,但是针对回归问题的,这篇论文针对的是半监督回归(semi-supervised regression)。

By ensembling predicted differences between the targets of an unseen data point and all training data points, it is possible to obtain a very accurate prediction for the original regression problem.

通过集成未见过的数据点的目标与所有训练数据点之间的预测差异,可以获得对原始回归问题的非常准确的预测。这一步应该是描述对于不同差异的平均操作。

Since any loop of predicted differences should sum to zero, loops can be supplied to the training data, even if the data points themselves within loops are unlabelled.

loop of predicted differences should sum to zero 这一步在上一篇论文中有介绍。

Semi-supervised training improves TNNR performance, which is already state of the art, significantly.

Note:
前置工作《Twin Neural Network Regression》。这篇工作是原作者方法对于半监督学习方向的拓展。

2. 算法描述

在这里插入图片描述

y j p r e = 1 m ∑ i = 1 m ( ( F ( x j , x i t r a i n ) + y i t r a i a n ) = 1 m ∑ i = 1 m ( ( 1 2 F ( x j , x i t r a i n ) + 1 2 F ( x i t r a i n , x j ) + y i t r a i a n ) (1) \begin{aligned} y_j^{pre}&= \frac{1}{m}\sum_{i=1}^{m}((F(x_j, x_i^{train}) + y_i^{traian})\\ &= \frac{1}{m}\sum_{i=1}^{m}((\frac{1}{2}F(x_j, x_i^{train}) + \frac{1}{2}F(x_i^{train}, x_j) + y_i^{traian})\\ \end{aligned}\tag{1} yjpre=m1i=1m((F(xj,xitrain)+yitraian)=m1i=1m((21F(xj,xitrain)+21F(xitrain,xj)+yitraian)(1), where

  • x i t r a i n ∈ X t r a i n x_i^{train} \in X^{train} xitrainXtrain,表示训练集中的训练样本。

n n n labeled data and m m m unlabeled data
有标记数据损失:
ℓ M S E = 1 n 2 ∑ i j ( F ( x i , x j ) − ( y i − y j ) ) 2 \ell_{MSE} = \frac{1}{n^2}\sum_{ij}(F(x_i, x_j)-(y_i-y_j))^2 MSE=n21ij(F(xi,xj)(yiyj))2

注意 n 2 n^2 n2,表示任意两个有标记数据配对。这也是天然适合半监督场景,拓展了训练数据集。

无标记数据损失:
ℓ l o o p = 1 ( n + m ) 2 ∑ i j k ( F ( x i , x j ) + F ( x j , x k ) + F ( x k , x i ) ) \ell_{loop} = \frac{1}{(n+m)^2}\sum_{ijk}(F(x_i, x_j)+F(x_j, x_k)+F(x_k, x_i)) loop=(n+m)21ijk(F(xi,xj)+F(xj,xk)+F(xk,xi))

总损失:
ℓ = ℓ M S E + Λ ℓ l o o p \ell = \ell_{MSE} + \Lambda\ell_{loop} =MSE+Λloop

上面已经把故事讲清楚了,但是还有一些细节。

  • 在mini-batch中,数据是如何配对的。
  • Λ \Lambda Λ 对于实验效果的影响。
  • loop type对于结果的影响。

3. 实验

论文中的对比实验中,对比算法较少。

http://www.lryc.cn/news/93037.html

相关文章:

  • java之反射机制和注解(更新中......)
  • 【Unity入门】25.入门结课Demo--神鸟大战怪兽
  • HTTP协议基本格式
  • 在 ubuntu 22.04 上配置界面服务器 xrdp
  • 53、基于51单片机蓄电池充电器过充过放保护LCD液晶屏显示系统设计(程序+原理图+PCB源文件+参考论文+参考PPT+元器件清单等)
  • 【C/C++】详解 函数重载和应用
  • WPF开发txt阅读器4:字体控件绑定
  • CoreDX DDS应用开发指南(8)开发订阅应用程序
  • 基于Python的接口自动化-读写配置文件
  • useEffect的基础知识和底层机制
  • chatgpt赋能python:Python中如何加空格
  • 软件测试之路已不再是坦途
  • 扫雷——C语言实现
  • CSS基础学习--6 CSS Text(文本)
  • 高精度电压源的应用场合有哪些
  • Android约束布局
  • selenium基础语法
  • 运行后端SpringBoot项目
  • #如何对待工作中的失误?# 如何对待工作与生活中的失误——一些不成熟的忠告
  • Shell脚本文本三剑客之awk编辑器
  • Focal Loss介绍
  • 【数据结构与算法】04 哈希表 / 散列表 (哈希函数、哈希冲突、链地址法、开放地址法、SHA256)
  • 每日一道面试题之介绍一下Java的序列化和反序列化!
  • Netty实战(十一)
  • Qos服务质量、心跳机制、保留消息,遗嘱信息,用户密码认证
  • MATLAB 之 线性方程组求解
  • 华为OD机试真题 Java 实现【字符串序列判定】【2022Q4 100分】,附详细解题思路
  • taro使用小记 —— 持续更新
  • 【LeetCode】110. 平衡二叉树
  • SQL视图、存储过程、触发器