ARC140D One to One
ARC140D One to One
题目大意
对于一个长度为nnn的整数序列X=(x1,x2,…xn)X=(x_1,x_2,\dots x_n)X=(x1,x2,…xn),每个元素都在111到nnn之间,令f(X)f(X)f(X)表示以下问题的答案:
- 有一个nnn个顶点nnn条边的无向图(可能有重边和自环),第iii条边连接iii和XiX_iXi,求联通块的数量
给一个正整数nnn和一个长度为nnn的序列A=(a1,a2…an)A=(a_1,a_2\dots a_n)A=(a1,a2…an),其每一个元素都在111到nnn之间,或者为−1-1−1。
你可以将每个值为−1-1−1的aia_iai变为任意一个111到nnn之间的数,求所有情况下f(A)f(A)f(A)的和。输出答案对998244353998244353998244353取模。
题解
令kkk表示ai=−1a_i=-1ai=−1的元素的个数。
我们可以先将ai≠−1a_i\neq -1ai=−1的边连上,那么现在图上的每一个连通块都是树或环或基环树。
如果是树的话,则这个连通块有且只有一个ai=−1a_i=-1ai=−1的点
如果是环或基环树的话,则这个连通块没有ai=−1a_i=-1ai=−1的点
我们可以先把环和基环树的贡献算出来,每个环或基环树的贡献为nkn^knk,因为不管怎么连,环或基环树都会有111的贡献。那么如果有树向环或基环树连边,则这棵树不计算贡献。
树与环或基环树连边的贡献不需计算,那么我们只需要求树与树连边的贡献了。
因为每棵树只有一条边连出去,所以我们可以将每棵树看成一个点。
如果不连向环和基环树,那么这些树一定会形成一个环。对于一个顺序已确定的环,形成这样的环的方案数为∏sizi\prod siz_i∏sizi。
我们考虑DP。设fif_ifi表示形成长度为iii的环的方案数,那么对于每个点jjj,有转移式
fi=fi+fi−1×sizkf_i=f_i+f_{i-1}\times siz_kfi=fi+fi−1×sizk
求出fff后我们考虑如何计算答案。对于所有长度为iii的环的贡献为fi×(i−1)!×nk−if_i\times (i-1)!\times n^{k-i}fi×(i−1)!×nk−i。其中(i−1)!(i-1)!(i−1)!表示iii个点按不同顺序可以构成(i−1)!(i-1)!(i−1)!个不同的环,nk−in^{k-i}nk−i表示其他n−kn-kn−k个点可以任意连边。
这样问题就解决了,时间复杂度为O(n2)O(n^2)O(n2)。
code
#include<bits/stdc++.h>
using namespace std;
int n,tot=0,vt=0,a[2005],d[5005],l[5005],r[5005],s[2005],z[2005],siz[2005];
long long ans,f[2005],jc[2005],mi[2005];
long long mod=998244353;
void add(int xx,int yy){l[++tot]=r[xx];d[tot]=yy;r[xx]=tot;
}
void dfs(int u){z[u]=1;siz[u]=1;for(int i=r[u];i;i=l[i]){if(!z[d[i]]){dfs(d[i]);siz[u]+=siz[d[i]];}}
}
int main()
{scanf("%d",&n);jc[0]=mi[0]=1;for(int i=1;i<=n;i++){jc[i]=jc[i-1]*i%mod;mi[i]=mi[i-1]*n%mod;}for(int i=1;i<=n;i++){scanf("%d",&a[i]);if(a[i]==-1) continue;add(i,a[i]);add(a[i],i);}for(int i=1;i<=n;i++){if(a[i]==-1){dfs(i);s[++vt]=siz[i];}}for(int i=1;i<=n;i++){if(!z[i]){dfs(i);ans=(ans+mi[vt])%mod; }}f[0]=1;for(int i=1;i<=vt;i++){for(int j=i;j>=1;j--) f[j]=(f[j]+f[j-1]*s[i]%mod)%mod;}for(int i=1;i<=vt;i++){ans=(ans+f[i]*jc[i-1]%mod*mi[vt-i]%mod)%mod;}printf("%lld",ans);return 0;
}