当前位置: 首页 > news >正文

LLM之高性能向量检索库

LLM向量数据库

  • 高性能向量检索库
    • milvus
      • 简介
      • 安装
      • 调用
    • faiss
      • 简介
      • 安装
      • 调用

高性能向量检索库

milvus

简介

Milvus 是一个开源的向量数据库引擎,旨在提供高效的向量存储、检索和分析能力。它被设计用于处理大规模的高维向量数据,常用于机器学习、计算机视觉、自然语言处理和推荐系统等领域。

Milvus 提供了多种功能和特性,使其成为处理向量数据的理想选择。以下是一些 Milvus 的主要特点:

  1. 高性能:Milvus 使用了高度优化的数据结构和索引算法,以实现快速的向量检索。它支持多种索引类型,如平面索引、倒排索引和 HNSW(Hierarchical Navigable Small World)等,这些索引能够加速向量的相似度搜索。
  2. 可扩展性:Milvus 具备良好的可扩展性,可以轻松地扩展到大规模的向量数据集。它支持分布式部署,可以在多个节点上进行数据存储和查询操作,实现高吞吐量和低延迟。
  3. 多样化的向量类型:Milvus 支持多种向量类型,包括浮点型向量、二进制向量和文本向量等。这使得它可以适应不同领域和应用中的向量数据需求。
  4. 多语言支持:Milvus 提供了多种编程语言的 SDK(软件开发工具包),包括 Python、Java、Go 和 C++ 等,使开发者可以方便地集成 Milvus 到他们的应用程序中。
  5. 可视化管理界面:Milvus 提供了一个易于使用的 Web 界面,用于管理和监控向量数据库。开发者可以通过该界面进行数据导入、索引构建和查询优化等操作,同时还能够查看系统状态和性能指标。

总之,Milvus 是一个功能强大的向量数据库引擎,通过其高性能、可扩展性和多样化的特性,能够有效地存储和检索大规模的高维向量数据。它在许多领域的应用中发挥着重要作用,帮助开发者加速向量相关任务的开发和部署。

安装

  • docker 安装镜像:docker pull milvusdb/milvus:cpu-latest

  • 创建工作目录:

    mkdir milvus

    cd milvus

    mkdir congf

    mkdir db

    mkdir logs

    mkdir wal

我的目录结构是:

  milvus│├─conf //配置文件目录│      server_config.yaml  //配置文件 搜索引擎配置都在这里修改│├─db //数据库存储目录 你的索引与向量存储的位置│└─logs //日志存储目录 │└─wal // 预写式日志相关配置

server_config.yaml

docker run -it milvusdb/milvus:cpu-latest bash

docker cp 74c20a680091:/var/lib/milvus/conf/server_config.yaml milvus/conf/

  • 启动容器

    docker run -td --name mymilvus -e "TZ=Asia/Shanghai" -p 19530:19530 -p 19121:19121 -v /work/lnn_workspace/chatgpt/search/milvus/conf:/var/lib/milvus/conf -v /work/lnn_workspace/chatgpt/search/milvus/db:/var/lib/milvus/db -v /work/lnn_workspace/chatgpt/search/milvus/logs:/var/lib/milvus/logs   milvusdb/milvus:cpu-latest
    

    docker ps | grep mymilvus

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-orhH8dlK-1685346967888)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20230519105321396.png)]

  • 安装pymilvus
pip install pymilvus==1.1.2
ps:注意这里安装最新版本可以会无法正常调用,1.1.2经过测试可正常使用

调用

# -*- coding: utf-8 -*-  # 导入相应的包  
import numpy as np  
from milvus import Milvus, MetricType  # 初始化一个Milvus类,以后所有的操作都是通过milvus来的  
milvus = Milvus(host='localhost', port='19530')  # 向量个数  
num_vec = 5000  
# 向量维度  
vec_dim = 768  
# name  
collection_name = "test_collection"  
# 创建collection,可理解为mongo的collection  
collection_param = {  'collection_name': collection_name,  'dimension': vec_dim,  'index_file_size': 32,  'metric_type': MetricType.IP  # 使用内积作为度量值  
}  
milvus.create_collection(collection_param)  # 随机生成一批向量数据  
# 支持ndarray,也支持list  
vectors_array = np.random.rand(num_vec, vec_dim)  # 把向量添加到刚才建立的collection中  
status, ids = milvus.insert(collection_name=collection_name, records=vectors_array)  # 返回 状态和这一组向量的ID  
milvus.flush([collection_name])  # 输出统计信息  
print(milvus.get_collection_stats(collection_name))  # 创建查询向量  
query_vec_array = np.random.rand(1, vec_dim)  
# 进行查询,  
status, results = milvus.search(collection_name=collection_name, query_records=query_vec_array, top_k=5)  
print(status)  
print(results)  # 如果不用可以删掉  
status = milvus.drop_collection(collection_name)  # 断开、关闭连接  
milvus.close()
collection_name = "test_collection"
- 定义集合名称为test_collection
collection_param = {'collection_name': collection_name,'dimension': vec_dim,'index_file_size': 32,'metric_type': MetricType.IP 
}
milvus.create_collection(collection_param)  - collection_name 指定集合名称为test_collection
- dimension 表示集合中向量的维度,由vec_dim变量赋值
- index_file_size 设置索引文件大小为32MB
- metric_type 设置度量类型为IP,表示使用向量内积作为相似度度量
所以,这段代码定义了集合名称和相关参数,用于在Milvus服务上创建一个新的集合。
在Milvus中,集合相当于关系数据库的表,是存储向量的基本单元。在创建集合时,我们需要指定:
1. 集合名称:唯一标识一个集合
2. 向量维度:集合中向量的特征数量
3. 度量类型:测量向量之间相似度的算法,如IP(内积)、L2(欧氏距离)4. 索引文件大小:用于提高搜索性能,索引文件会存储向量的索引信息

faiss

简介

Faiss是Facebook开源的一个向量检索库,用于大规模向量集合的索引和搜索。主要功能包括:

  1. 支持多种索引结构: IVF, IVFFlat, HNSW, etc。这些索引结构可以实现高精度和高召回的向量搜索。
  2. 支持多种度量方式:内积,欧氏距离,cosine 相似度等。可选择合适的度量方式对向量集合建立索引。
  3. 快速的索引构建与搜索:Faiss使用GPU加速,可以实现亿量级向量的索引构建和搜索。
  4. 降维与聚类:Faiss提供PCA,IVFFlat等算法进行向量降维,并支持Kmeans算法进行向量聚类。
  5. 高级特性:Faiss支持在线学习,异构向量检索,索引压缩等高级特性。

Faiss的典型应用有:

  1. 图像检索:在大规模图片数据库中找到与输入图片最相似的图片。

  2. 文本匹配:快速找到与输入文本最相近的文本内容。

  3. 推荐系统:根据用户兴趣对大量商品进行快速检索和推荐。

  4. 声纹识别:在海量语音数据中实现语音识别和检索。

Faiss提供C++, Python和Java语言接口,可以轻松构建向量检索系统。如果需要管理和搜索海量高维向量,Faiss是一个非常好的选择。

安装

install faiss-cpu

调用

# 导入库  
import numpy as np  
import faiss  # 向量个数  
num_vec = 5000  
# 向量维度  
vec_dim = 768  
# 搜索topk  
topk = 10  # 随机生成一批向量数据  
vectors = np.random.rand(num_vec, vec_dim)  # 创建索引  
faiss_index = faiss.IndexFlatL2(vec_dim)  # 使用欧式距离作为度量  
# 添加数据  
faiss_index.add(vectors)  # 查询向量 假设有5个  
query_vectors = np.random.rand(5, vec_dim)  
# 搜索结果  
# 分别是 每条记录对应topk的距离和索引  
# ndarray类型 。shape:len(query_vectors)*topk  
res_distance, res_index = faiss_index.search(query_vectors, topk)  
print(res_index)  
print(res_distance)
http://www.lryc.cn/news/91065.html

相关文章:

  • 实体类注解
  • 常见数据结构种类
  • linux高级---k8s中的五种控制器
  • 记一次udp服务性能优化经历
  • uniapp和VueI18n多语言H5项目语言国际化功能搭建流程
  • C# | 凸包算法之Jarvis,寻找一组点的边界/轮廓
  • SpringBoot接收请求参数的方式
  • MKS SERVO4257D 闭环步进电机_系列5 CAN指令说明
  • 安捷伦E4440A(Agilent) e4440a 3HZ-26.5G频谱分析仪
  • 华为OD机试真题 Java 实现【最长子字符串的长度】【2022Q4 100分】,附详细解题思路
  • 【iOS】--对象的底层结构
  • 高并发内存池设计_内存池
  • 给编程初学者的一封信
  • 【无功优化】基于改进教与学算法的配电网无功优化【IEEE33节点】(Matlab代码时候)
  • 数据在内存中的存储(超详细讲解)
  • log4cplus使用示例
  • 人工智能学习07--pytorch20--目标检测:COCO数据集介绍+pycocotools简单使用
  • learnOpenGL-深度测试
  • 阿里云服务器数据盘是什么?系统盘和数据盘区别
  • linux常用命令精选
  • 人体行为足力特征分析及其应用研究_kaic
  • javascript基础二十七:说说 JavaScript 数字精度丢失的问题,解决方案?
  • 重塑工作场所:后疫情时代组织韧性的8个策略
  • TCP协议为什么要三次握手而不是两次?
  • 使用Vuex进行状态管理
  • 【优化调度】基于改进遗传算法的公交车调度排班优化的研究与实现(Matlab代码实现)
  • IMX6ULL裸机篇之I2C实验-硬件原理图
  • 华为OD机试真题 Java 实现【获取字符串中连续出现次数第k多的字母的次数】【2023Q1 100分】,附详细解题思路
  • 充分统计量和因子分解定理
  • M1 PD安装arm ubuntu及Docker