当前位置: 首页 > news >正文

最新版本 Stable Diffusion 开源 AI 绘画工具之微调模型篇

✨ 目录

    • 🎈 模型种类
    • 🎈 变分自动编码器 / VAE
    • 🎈 美学梯度 / Aesthetic Gradients
    • 🎈 大型语言模型的低阶自适应 / LoRA
    • 🎈 超网络模型 / Hypernetwork
    • 🎈 微调模型 / LyCORIS

🎈 模型种类

  • 当你打开模型网站C站后,你可以看到右上角筛选里面有很多不同种类的模型
  • 包括:CheckpointTextual InversionHypernetworkVAELoraLyCORISAesthetic Gradients等等
  • 其中 Checkpoint 是主模型,所以体积会很大,因为要基于大模型参数的训练,所以最开始诞生的就是主模型,你可以把它当作其他模型的主体
  • 因为体积太大,导致在处理各种细节的时候准确度其实是不够的,比如我要调图片的饱和度,给图片添加不同的滤镜,所以对于细节的处理,出现了各种衍生出来的小模型
  • 比如上一篇我们讲解的 Embedding 模型,它就是负责文本理解的模块,上手非常容易,但是效果却非常的不错,逐渐被用户接受,因此相继出现了其他的模型

模型种类

🎈 变分自动编码器 / VAE

  • 这个其实就是在主模型基础上做图片微调的,比如大家经常使用的滤镜,以及处理图片的饱和度
  • 所以这类模型比较少,主要是一些主流的修图软件已经可以实现这些功能,用起来门槛更低
  • 首先,默认操作界面上是没有 VAE 选项的,需要手动开启
  • 点击设置 Setting ► 点击用户界面 User Interface ► 找到快捷设置列表 Quicksettings list ► 输入框添加 ,sd_vae,CLIP_stop_at_last_layers ► 点击应用设置 Apply settings ► 点击重启UI界面 Reload UI,即可看到 VAE 选项卡

开启VAE选项卡
选项卡界面

  • 下载 vae 模型后,将其放置在 models/VAE 目录下,当然,你可以从C站上面下载,也可以从 huggingface 上面下载
  • 一些常见的 VAE 下载地址:
  • https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt
  • https://huggingface.co/AIARTCHAN/aichan_blend/resolve/main/vae/Anything-V3.0.vae.safetensors
  • https://huggingface.co/AIARTCHAN/aichan_blend/resolve/main/vae/Berry's%20Mix.vae.safetensors
  • 下载好,然后点击 VAE 设置项右边的刷新按钮就可以看到这些模型
    VAE模型
  • 可以使用 X/Y/Z plot 脚本对比一下加和不加 VAE 的一个对比情况

脚本设置
效果对比

🎈 美学梯度 / Aesthetic Gradients

  • 这个模型主要是通过一张或者几张参考图生成一个美学模型,最终对提示词进行调整和加权
  • 项目地址是:https://github.com/vicgalle/stable-diffusion-aesthetic-gradients,其中 aesthetic_embeddings 目录下有一些准备好的 Embedding
  • 如果你想使用它,需要安装扩展:https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients
  • 安装好这个扩展后,就可以在 Aesthetic imgs embedding 里面选择对应的 Embedding
  • 但是现在这个美学梯度已经属于落后的模型方式了,效果相对其他方案而言,已经没有了任何优势,现在算是大势已去

🎈 大型语言模型的低阶自适应 / LoRA

  • 这个模型主要是通过矩阵分解的方式,微调少量参数,并加总在整体参数上,所以它现在主要用来控制很多特定场景的内容生成
  • LoRA 模型下载后需要放置在 models\lora 目录下
  • 对比下不用 LoRA 和用 LoRA 的区别

是否添加lora区别

🎈 超网络模型 / Hypernetwork

  • 主要是让梯度作用于模型的扩散 Diffusion 过程。扩散过程中的每一步都通过一个额外的小网络来调整去噪过程的结果
  • 功能和embeddinglora类似,都是对生成的图片进行针对性地调整
  • hypernetwork 的应用领域较窄,主要是训练画风,训练难度很大
  • 未来很有可能被后出现的 lora 所替代,新手可以将 hypernetwork 理解为低配版的 lora
  • hypernetwork 最重要也是实现最好的功能是对画面风格的转换,也就是切换不同的画风
  • 模型下载后需要放在 models\hypernetworks 目录下,主要使用方式是在 prompt 中使用嵌入语法 <hypernet:felt:1>
  • 我这里使用的是毛毡风格画:https://civitai.com/models/68942/felt

毛毡艺术

🎈 微调模型 / LyCORIS

  • 这是最近开始流行的一种新的模型,如其名字是一种超越传统方法的 Lora,但是要比 LoRA 能够微调的层级多,它的前身是 LoCon (LoRA for convolution layer)
  • LyCORIS 模型可以放在 lora 的目录下,当做普通的 lora 使用,但无法使用丰富的细节参数
  • 如果需要使用更多的参数,需要安装扩展:https://github.com/KohakuBlueleaf/a1111-sd-webui-lycoris
  • 安装过 LyCORIS 插件后,将 LyCORIS 模型下载后,拷贝至 models\LyCORIS
  • 比如我们使用C站很火的胶片风模型:https://civitai.com/models/33208/filmgirl-film-grain-lora-and-loha
  • 使用语法:<lyco:LoRA名称:1:0.5:13>,可以通过 script 中的 prompt matrix 功能可以查看加和不加 lyco 的区别
# prompt 
young 1girl with braided hair and fluffy cat ears, dressed in Off-Shoulder Sundress, standing in a rustic farm setting. She has a soft, gentle smile, expressive eyes and sexy cleavage. The background features a charming barn, fields of golden wheat, and a clear blue sky. The composition should be bathed in the warm, golden hour light, with a gentle depth of field and soft bokeh to accentuate the pastoral serenity. Capture the image as if it were taken on an old-school 35mm film for added charm, looking at viewer, ||<lora:Velvia1:0.6># negative prompt
cartoon, anime, sketches,(worst quality, low quality), (deformed, distorted, disfigured), (bad eyes, wrong lips, weird mouth, bad teeth, mutated hands and fingers:1.2), bad anatomy, wrong anatomy, amputation, extra limb, missing limb, floating limbs, disconnected limbs, mutation, ugly, disgusting, (bad_pictures, negative_hand-neg:1.2)

效果对比

http://www.lryc.cn/news/90449.html

相关文章:

  • 路径规划算法:基于哈里斯鹰优化的路径规划算法- 附代码
  • Web 应用程序防火墙 (WAF) 相关知识介绍
  • docker快速部署hue+hue集成hive
  • 基于java SpringBoot和Vue uniapp的校园信息交流小程序
  • 数据包伪造替换、会话劫持、https劫持之探索和测试
  • 正则表达式集合
  • Django框架中models对象转换为json的方法
  • 利用Servlet编写第一个“hello world“
  • python 爬虫之js逆向爬虫详解
  • SpringBoot:WebSocket实现消息撤回、图片撤回
  • 输出指定日期区间内的所有天、周、月
  • 【线性规划模型】
  • android 12.0卸载otg设备开机不加载otg设备
  • 通过 Wacom 的 Project Mercury 提高远程办公效率
  • Linux-0.11 文件系统namei.c详解
  • 计算机网络学习笔记
  • Pod相关操作命令
  • 图灵完备游戏:信号计数 解法记录
  • 数据结构图的基础概念
  • 一场九年前的“出发”:奠基多模态,逐鹿大模型
  • 什么是url跳转漏洞?
  • 生物学经典blast比对算法,R语言和Python如何实现?
  • Android 开机动画支持mp4格式视频播放
  • 软考A计划-试题模拟含答案解析-卷十
  • Kafka入门(安装和SpringBoot整合)
  • gitLab相关命令
  • 一些查看日志时的常用命令
  • Javascript 的执行环境(execution context)和作用域(scope)及垃圾回收
  • CRDT协同算法
  • 近代中国的三次思想文化运动