当前位置: 首页 > news >正文

Caffeine 本地高速缓存工具类

目录

Caffeine工具类方式

SpringBoot 整合 Caffeine 缓存 (SpringCache模式)

驱逐策略

开发使用


Caffeine是一种高性能的缓存库,是基于Java 8的最佳(最优)缓存框架,性能各方面优于guava。

Caffeine工具类方式

原文链接:https://www.cnblogs.com/wudiffs/p/11585757.html

代码仓库如下:

<dependency><groupId>com.github.ben-manes.caffeine</groupId><artifactId>caffeine</artifactId><version>2.4.0</version>
</dependency>

 代码详细示例如下:

public class CaffeineCacheManagerService {private static LoadingCache<String, CacheVO> cache;private static AsyncLoadingCache<String, CacheVO> asyncCache;private static AsyncLoadingCache<String, CacheVO> asyncCache1;private static ExecutorService executorService = new ThreadPoolExecutor(8, 8, 8, TimeUnit.SECONDS, newLinkedBlockingQueue<Runnable>(1204));static {cache = Caffeine.newBuilder()// 初始化缓存长度.initialCapacity(1024 * 10)// 最大长度.maximumSize(1024 * 10)// 更新策略.refreshAfterWrite(10, TimeUnit.SECONDS)// 设置缓存的过期时间.expireAfterWrite(10, TimeUnit.SECONDS).build(new CacheLoader<String, CacheVO>() {// 同步加载@CheckForNull@Overridepublic CacheVO load(@Nonnull String key) throws Exception {return createCacheVO(key);}// getAll将会对缓存中没有值的key分别调用CacheLoader.load方法来构建缓存的值。// 我们可以重写CacheLoader.loadAll方法来提高getAll的效率。@Nonnull@Overridepublic Map<String, CacheVO> loadAll(@Nonnull Iterable<? extends String> keys) throws Exception {return createBatchCacheVOs(keys);}});// 异步加载 同步load写法,最后也会转异步asyncCache = Caffeine.newBuilder().maximumSize(1024 * 10).expireAfterWrite(10, TimeUnit.SECONDS).buildAsync(new CacheLoader<String, CacheVO>() {@CheckForNull@Overridepublic CacheVO load(@Nonnull String key) throws Exception {return createCacheVO(key);}@Nonnull@Overridepublic Map<String, CacheVO> loadAll(@Nonnull Iterable<? extends String> keys) {return createBatchCacheVOs(keys);}});// 异步加载 异步load写法asyncCache1 = Caffeine.newBuilder().maximumSize(1024 * 10).expireAfterWrite(10, TimeUnit.SECONDS).buildAsync(new AsyncCacheLoader<String, CacheVO>() {@Nonnull@Overridepublic CompletableFuture<CacheVO> asyncLoad(@Nonnull String key, @Nonnull Executor executor) {return asyncCreateCacheVO(key, executor);}@Nonnull@Overridepublic CompletableFuture<Map<String, CacheVO>> asyncLoadAll(@Nonnull Iterable<? extends String> keys, @Nonnull Executor executor) {return asyncCreateBatchCacheVOs(keys, executor);}});}public static CompletableFuture<CacheVO> asyncCreateCacheVO(String key, Executor executor) {return CompletableFuture.supplyAsync(() -> createCacheVO(key), executor);}public static CompletableFuture<Map<String, CacheVO>> asyncCreateBatchCacheVOs(Iterable<? extends String> keys, Executor executor) {return CompletableFuture.supplyAsync(() -> createBatchCacheVOs(keys), executor);}public static CacheVO createCacheVO(String key) {return new CacheVO(key);}public static Map<String, CacheVO> createBatchCacheVOs(Iterable<? extends String> keys) {Map<String, CacheVO> result = new HashMap<>();for (String key : keys) {result.put(key, new CacheVO(key));}return result;}public static void main(String[] args) throws Exception {CacheVO cacheVO1 = cache.get("AA");List<String> list = new ArrayList<>();list.add("BB");list.add("CC");Map<String, CacheVO> map = cache.getAll(list);// 如果有缓存则返回;否则运算、缓存、然后返回,整个过程是阻塞的// 即使多个线程同时请求该值也只会调用一次Function方法CacheVO cacheVO2 = cache.get("DD", (k) -> createCacheVO(k));System.out.println(JSON.toJSONString(cacheVO2));// 单个清除cache.invalidate("AA");// 批量清除cache.invalidateAll(list);// 全部清除cache.invalidateAll();// 返回一个CompletableFutureCompletableFuture<CacheVO> future = asyncCache.get("EE");CacheVO asyncCacheVO = future.get();System.out.println(JSON.toJSONString(asyncCacheVO));// 返回一个CompletableFuture<MAP<>>CompletableFuture<Map<String, CacheVO>> allFuture = asyncCache.getAll(list);Map<String, CacheVO> asyncMap = allFuture.get();System.out.println(JSON.toJSONString(asyncMap));CompletableFuture<CacheVO> future1 = asyncCache1.get("FF");CacheVO asyncCacheVO1 = future1.get();System.out.println(JSON.toJSONString(asyncCacheVO1));CompletableFuture<Map<String, CacheVO>> allFuture1 = asyncCache1.getAll(list);Map<String, CacheVO> asyncMap1 = allFuture.get();System.out.println(JSON.toJSONString(asyncMap1));}}

或者使用下发方式实现Caffeine 工具类

支持同步、异步读写缓存实现

import com.github.benmanes.caffeine.cache.AsyncCache;
import com.github.benmanes.caffeine.cache.Caffeine;import java.util.concurrent.CompletableFuture;
import java.util.concurrent.Executor;
import java.util.concurrent.TimeUnit;public class CaffeineCacheUtils {private static com.github.benmanes.caffeine.cache.Cache<Object, Object> syncCache;private static AsyncCache<Object, Object> asyncCache;private CaffeineCacheUtils() {}public static void initCache() {syncCache = Caffeine.newBuilder().initialCapacity(100).maximumSize(1000).expireAfterWrite(30, TimeUnit.MINUTES).build();asyncCache = Caffeine.newBuilder().initialCapacity(100).maximumSize(1000).expireAfterWrite(30, TimeUnit.MINUTES).buildAsync();}public static void putSync(Object key, Object value) {syncCache.put(key, value);}public static Object getSync(Object key) {return syncCache.getIfPresent(key);}public static CompletableFuture<Object> getAsync(Object key, Executor executor) {return asyncCache.get(key, k -> CompletableFuture.supplyAsync(() -> fetchDataFromDataSource(k), executor));}public static CompletableFuture<Void> putAsync(Object key, Object value, Executor executor) {return asyncCache.put(key, CompletableFuture.completedFuture(value), executor);}public static void removeSync(Object key) {syncCache.invalidate(key);}public static void clearSync() {syncCache.invalidateAll();}private static Object fetchDataFromDataSource(Object key) {// 模拟从数据源获取数据的操作// 这里可以根据具体业务需求进行实现return null;}
}

 

SpringBoot 整合 Caffeine 缓存 (SpringCache模式)

原文链接:https://blog.csdn.net/Listening_Wind/article/details/110085228

添加依赖:

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-cache</artifactId>
</dependency>
<dependency><groupId>com.github.ben-manes.caffeine</groupId><artifactId>caffeine</artifactId><version>2.6.2</version>
</dependency>

 缓存配置:

 如果使用了多个cahce,比如redis、caffeine等,必须指定某一个CacheManage为@primary

import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import org.assertj.core.util.Lists;
import org.springframework.cache.CacheManager;
import org.springframework.cache.caffeine.CaffeineCache;
import org.springframework.cache.support.SimpleCacheManager;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;import java.util.ArrayList;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.TimeUnit;/*** @Author: Wxy* @Date: 2020/11/7 16:56* @Description*/
@Configuration
@EnableCaching // 开启缓存,否则无效
public class CaffeineConfig {/*** 创建基于Caffeine的Cache Manager** @return*/@Bean@Primarypublic CacheManager caffeineCacheManager() {SimpleCacheManager cacheManager = new SimpleCacheManager();ArrayList<CaffeineCache> caches = Lists.newArrayList();Map<String, Object> map = getCacheType();for (String name : map.keySet()) {caches.add(new CaffeineCache(name, (Cache<Object, Object>) map.get(name)));}cacheManager.setCaches(caches);return cacheManager;}/*** 初始化自定义缓存策略** @return*/private static Map<String, Object> getCacheType() {Map<String, Object> map = new ConcurrentHashMap<>();map.put("name1", Caffeine.newBuilder().recordStats().expireAfterWrite(10, TimeUnit.SECONDS).maximumSize(100).build());map.put("name2", Caffeine.newBuilder().recordStats().expireAfterWrite(50, TimeUnit.SECONDS).maximumSize(50).build());return map;}
}

驱逐策略

基于大小的回收策略有两种方式:基于缓存大小,基于权重,基于时间。
maximumSize : 根据缓存的计数进行驱逐 同一缓存策略 缓存的数据量,以访问先后顺序,以最大100为例,超出100驱逐最晚访问的数据缓存。
maximumWeight : 根据缓存的权重来进行驱逐(权重只是用于确定缓存大小,不会用于决定该缓存是否被驱逐)。
maximumWeight与maximumSize不可以同时使用。

Caffeine提供了三种定时驱逐策略:

expireAfterAccess(long, TimeUnit):在最后一次访问或者写入后开始计时,在指定的时间后过期。假如一直有请求访问该key,那么这个缓存将一直不会过期。
expireAfterWrite(long, TimeUnit): 在最后一次写入缓存后开始计时,在指定的时间后过期。
expireAfter(Expiry): 自定义策略,过期时间由Expiry实现独自计算。
缓存的删除策略使用的是惰性删除和定时删除。这两个删除策略的时间复杂度都是O(1)

开发使用

主要基于Spring缓存注解@Cacheable、@CacheEvict、@CachePut的方式使用

  • @Cacheable :改注解修饰的方法,若不存在缓存,则执行方法并将结果写入缓存;若存在缓存,则不执行方法,直接返回缓存结果。
  • @CachePut :执行方法,更新缓存;该注解下的方法始终会被执行。
  • @CacheEvict :删除缓存
  • @Caching 将多个缓存组合在一个方法上(该注解可以允许一个方法同时设置多个注解)
  • @CacheConfig 在类级别设置一些缓存相关的共同配置(与其它缓存配合使用)

注意 :@Cacheable 默认使用标@primary 注释的CacheManage

/*** 先查缓存,如果查不到,执行方法体并将结果写入缓存,若查到,不执行方法体,直接返回缓存结果* @param id*/
@Cacheable(value = "name1", key = "#id", sync = true)
public void getUser(long id){//TODO 查找数据库
}/*** 更新缓存,每次都会执行方法体* @param user*/
@CachePut(value = "name1", key = "#user.id")
public void saveUser(User user){//todo 保存数据库
}/*** 删除* @param user*/
@CacheEvict(value = "name1",key = "#user.id")
public void delUser(User user){//todo 保存数据库
}

 参考博客:https://www.cnblogs.com/wudiffs/p/11585757.html

(23条消息) SpringBoot 集成 Caffeine(咖啡因)最优秀的本地缓存_springboot caffeine_Listening_Wind的博客-CSDN博客https://blog.csdn.net/Listening_Wind/article/details/110085228

http://www.lryc.cn/news/90024.html

相关文章:

  • 加密解密软件VMProtect教程(八)许可制度之序列号生成器
  • 单源最短路的建图
  • MyBatis基本操作及SpringBoot单元测试
  • Linux之创建进程、查看进程、进程的状态以及进程的优先级
  • k8s部署rabbitmq
  • 关于QGroundControl的软件架构的理解
  • Android 文本识别:MLKIT + PreviewView
  • 刮泥机的分类有哪些及组成部分
  • Qt编程基础 | 第六章-窗体 | 6.2、VS导入资源文件
  • NET框架程序设计-第4章类型基础
  • Java设计模式-备忘录模式
  • Zookeeper集群 + Kafka集群
  • “邮件营销新趋势,这个平台让你收获颇丰!
  • Python列表推导
  • git使用查看分支、创建分支、合并分支
  • vue3.0与vue2.0
  • HTML 中的常用标签用法
  • 【C++】指针 - 定义和使用,所占内存空间,空指针,野指针,const 修饰指针,指针和数组,指针和函数
  • 新规之下产业园区如何合理收费水电费用
  • 1011. 在 D 天内送达包裹的能力
  • 基于SpringBoot养老院管理系统
  • 1.3 eBPF的工作原理初探
  • 【CH32】| 02——常用外设 | GPIO
  • 第四章 测试用例编
  • 解决dpdk reserve的内存返回的虚拟地址和iova地址一样的问题
  • JQuery实现小项目
  • 【C++/嵌入式笔试面试八股】一、23.结构体指针 | 指针和引用 | 万能指针 | 野指针
  • 【C++初阶】类和对象(下)构造函数(初始化列表) + explicit关键字 +static成员
  • chatgpt赋能python:Python代码怎么用?一个10年编程经验工程师的实践总结
  • 【Android定制】修改BUILD_AGO_GMS = no 和 BUILD_GMS=no属性