通过强化学习走直线理解基本概念
摘要: 一条线上包含起点和终点共有6个格子,起点在左终点在右。假设智能体已经学到了最优的策略,并且在每一步行动时,以 0.9 0.9 0.9 的概率选择最优策略(也就是往右),以 0.1 0.1 0.1 的概率选择随机策略。各个概念的定义见文末参考链接,本文举实际的数值例子帮助理解。
定义
智能体要从最左边的第一个格子走到最右边的终点一次走一步。把6个格子分别记作状态 s 1 , s 2 , ⋯ , s 6 s_1,s_2,\cdots,s_6 s1,s2,⋯,s6,动作有两种,分别记作 L L L 和 R R R。如果不特别说明,一般随机变量为大写字母,具体数值为小写字母。 L L L 和 R R R 表示动作,不是随机变量。
- 策略函数 (Policy Function) π ( a ∣ s ) \pi(a|s) π(a∣s):在一个状态 s i s_i si 处采取每个动作 a i a_i ai 的概率。简单记作 π ( L ∣ s ) = 0.1 , π ( R ∣ s ) = 0.9 \pi(L|s)=0.1,\pi(R|s)=0.9 π(L∣s)=0.1,π(R∣s)=0.9,严谨写法为
{ π ( A = L ∣ S = s i ) = 0.1 , π ( A = R ∣ S = s i ) = 0.9 , i ≠ 1 π ( A = L ∣ S = s i ) = 0 , π ( A = R ∣ S = s i ) = 1 , i = 1 \begin{cases} \pi(A=L|S=s_i)=0.1,\pi(A=R|S=s_i)=0.9, & i \neq 1 \\ \pi(A=L|S=s_i)=0,\pi(A=R|S=s_i)=1, & i = 1 \\ \end{cases} {π(A=L∣S=si)=0.1,π(A=R∣S=si)=0.9,π(A=L∣S=si)=0,π(A=R∣S=si)=1,i=1i=1
如果在起点处往左走,环境给的反馈是智能体保持在起点不动。
奖励 (Reward): 智能体在状态 s i s_i si 处采取动作 a i a_i ai 后,环境给的奖励 r ( s , a ) r(s,a) r(s,a)。 r ( s = s 5 , a = R ) = 6 r(s=s_5,a=R)=6 r(s=s5,a=R)=6(便于区分),其余的 r ( s , a ) r(s,a) r(s,a) 都是0。
(折扣)回报(Return): 从第 t t t 个回合开始计算的每个回合奖励的总和
U t = r t + γ r t + 1 + γ 2 r t + 2 + ⋯ U t = r t + γ U t + 1 \begin{aligned} & U_t=r_t+\gamma r_{t+1}+\gamma^2r_{t+2}+\cdots \\ & U_t=r_t+\gamma U_{t+1} \end{aligned} Ut=rt+γrt+1+γ2rt+2+⋯Ut=rt+γUt+1
下面都能达到终点的的几个动作和对应的回报分别为 - RRRRR: 0 + 0 γ + 0 γ 2 + 0 γ 3 + 6 γ 4 0+0\gamma+0\gamma^2+0\gamma^3+6\gamma^4 0+0γ+0γ2+0γ3+6γ4
- RRRLRRR: 0 + 0 γ + 0 γ 2 + 0 γ 3 + + 0 γ 4 + 0 γ 5 + 6 γ 6 0+0\gamma+0\gamma^2+0\gamma^3++0\gamma^4+0\gamma^5+6\gamma^6 0+0γ+0γ2+0γ3++0γ4+0γ5+6γ6
- RLRRRRLRR: 0 + 0 γ + 0 γ 2 + 0 γ 3 + + 0 γ 4 + 0 γ 5 + 0 γ 6 + + 0 γ 7 + 6 γ 8 0+0\gamma+0\gamma^2+0\gamma^3++0\gamma^4+0\gamma^5 +0\gamma^6++0\gamma^7+6\gamma^8 0+0γ+0γ2+0γ3++0γ4+0γ5+0γ6++0γ7+6γ8
状态价值函数(State-Value Function): 在状态 s i s_i si 处,采用当前策略 π \pi π 时回报的期望。 V π ( s ) = E ( U t ∣ s = s i ) V_\pi(s)=\mathbb{E}(U_t|s=s_i) Vπ(s)=E(Ut∣s=si)。
动作价值函数(Action-Value Function): 在状态 s i s_i si 处采取动作 a i a_i ai 后,继续保持当前的总体策略 π \pi π 时(也就是以 0.9 0.9 0.9 的概率选择最优策略),回报的期望。 Q π ( s , a ) = E ( U t ∣ s = s i , a = a i ) Q_\pi(s,a)=\mathbb{E}(U_t|s=s_i,a=a_i) Qπ(s,a)=E(Ut∣s=si,a=ai)。
最优动作价值函数(Optimal Action-Value Function): 总是选择最优策略时回报的期望。 Q ∗ ( s , a ) = E ( U t ∣ s = s i , a = a i ) Q^*(s,a)=\mathbb{E}(U_t|s=s_i,a=a_i) Q∗(s,a)=E(Ut∣s=si,a=ai)
下面计算状态价值函数和最优动作价值函数。在这一个例子中,最优动作价值函数就是一直往右走,比较好计算。
Q ∗ ( s = s 1 , a = R ) = 6 γ 4 Q ∗ ( s = s 2 , a = R ) = 6 γ 3 ⋮ Q ∗ ( s = s 5 , a = R ) = 6 \begin{aligned} & Q^*(s=s_1,a=R)=6\gamma^4 \\ & Q^*(s=s_2,a=R)=6\gamma^3 \\ & \vdots \\ & Q^*(s=s_5,a=R)=6 \\ \end{aligned} Q∗(s=s1,a=R)=6γ4Q∗(s=s2,a=R)=6γ3⋮Q∗(s=s5,a=R)=6
下面计算当前策略下每个状态的状态价值函数。这里用到了一个简单的公式
V π ( s ) = E ( U t ∣ s ) = E ( r t ∣ s ) + γ E ( U t + 1 ∣ s ) = r t ( s ) + γ V π ( s t + 1 ) V_\pi(s)=\mathbb{E}(U_t|s) =\mathbb{E}(r_t|s)+\gamma\mathbb{E}(U_{t+1}|s) =r_t(s)+\gamma V_\pi(s_{t+1}) Vπ(s)=E(Ut∣s)=E(rt∣s)+γE(Ut+1∣s)=rt(s)+γVπ(st+1)
其中 E ( r t ∣ s ) = r t ( s ) \mathbb{E}(r_t|s)=r_t(s) E(rt∣s)=rt(s) 表示在状态 s s s 时的期望奖励, s t + 1 s_{t+1} st+1 表示 s s s 的下一个状态。在这个例子中,
E ( r t ∣ s ) = ∑ a P ( a ∣ s ) r ( s , a ) = 0.9 r ( s , R ) + 0.1 r ( s , L ) \mathbb{E}(r_t|s)=\sum_a\mathbb{P}(a|s)r(s,a) =0.9r(s,R)+0.1r(s,L) E(rt∣s)=a∑P(a∣s)r(s,a)=0.9r(s,R)+0.1r(s,L)
于是可以算出每个状态的期望奖励
r ( s 5 ) = 0.9 ⋅ 6 + 0.1 ⋅ 0 r ( s 4 ) = R ( s 3 ) = ( s 2 ) = R ( s 1 ) = 0 \begin{aligned} & r(s_5)=0.9\cdot 6+0.1\cdot 0 \\ & r(s_4)=R(s_3)=(s_2)=R(s_1)=0 \\ \end{aligned} r(s5)=0.9⋅6+0.1⋅0r(s4)=R(s3)=(s2)=R(s1)=0
此时每个状态的状态价值函数为 (已知 V π ( s 6 ) = 6 V_\pi(s_6)=6 Vπ(s6)=6)
V π ( s 5 ) = r ( s 5 ) + γ ( 0.9 ⋅ 6 + 0.1 V π ( s 4 ) ) V π ( s 4 ) = r ( s 4 ) + γ ( 0.9 V π ( s 5 ) + 0.1 V π ( s 3 ) ) V π ( s 3 ) = r ( s 3 ) + γ ( 0.9 V π ( s 4 ) + 0.1 V π ( s 2 ) ) V π ( s 2 ) = r ( s 2 ) + γ ( 0.9 V π ( s 3 ) + 0.1 V π ( s 1 ) ) V π ( s 1 ) = r ( s 1 ) + γ ( 0.9 V π ( s 2 ) + 0.1 V π ( s 1 ) ) \begin{aligned} & V_\pi(s_5)=r(s_5)+\gamma(0.9\cdot 6+0.1V_\pi(s_4)) \\ & V_\pi(s_4)=r(s_4)+\gamma(0.9V_\pi(s_5) + 0.1V_\pi(s_3)) \\ & V_\pi(s_3)=r(s_3)+\gamma(0.9V_\pi(s_4) + 0.1V_\pi(s_2)) \\ & V_\pi(s_2)=r(s_2)+\gamma(0.9V_\pi(s_3) + 0.1V_\pi(s_1)) \\ & V_\pi(s_1)=r(s_1)+\gamma(0.9V_\pi(s_2) + 0.1V_\pi(s_1)) \\ \end{aligned} Vπ(s5)=r(s5)+γ(0.9⋅6+0.1Vπ(s4))Vπ(s4)=r(s4)+γ(0.9Vπ(s5)+0.1Vπ(s3))Vπ(s3)=r(s3)+γ(0.9Vπ(s4)+0.1Vπ(s2))Vπ(s2)=r(s2)+γ(0.9Vπ(s3)+0.1Vπ(s1))Vπ(s1)=r(s1)+γ(0.9Vπ(s2)+0.1Vπ(s1))
设 γ = 0.8 \gamma=0.8 γ=0.8,可以解得
V π ( s 5 ) = 4.602433406284881 V π ( s 4 ) = 3.5304175785610044 V π ( s 3 ) = 2.708319075448633 V π ( s 2 ) = 2.080230236058876 V π ( s 1 ) = 1.6280062716982504 \begin{aligned} & V_\pi(s_5)=4.602433406284881 \\ & V_\pi(s_4)=3.5304175785610044 \\ & V_\pi(s_3)=2.708319075448633 \\ & V_\pi(s_2)=2.080230236058876 \\ & V_\pi(s_1)=1.6280062716982504 \\ \end{aligned} Vπ(s5)=4.602433406284881Vπ(s4)=3.5304175785610044Vπ(s3)=2.708319075448633Vπ(s2)=2.080230236058876Vπ(s1)=1.6280062716982504
求解的python代码如下
import numpy as np
A = np.array([[0.0, 0.08, 0.0, 0.0, 0.0],[0.72, 0.0, 0.08, 0.0, 0.0],[0.0, 0.72, 0.0, 0.08, 0.0],[0.0, 0.0, 0.72, 0.0, 0.08],[0.0, 0.0, 0.0, 0.72, 0.08]])
B = np.eye(5) - A
C = np.array([4.32, 0, 0, 0, 0])
D = np.matmul(np.linalg.inv(B) , C.T)
for n in range(5):print(D[n])
动作价值函数可以采用类似的方法计算。
贝尔曼方程
参考
- 王树森 张志华,《深度强化学习(初稿)》
- Mathematical Foundation of Reinforcement Learning -GitHub