当前位置: 首页 > news >正文

机器学习基础

一、基本概念

1 学习的概念

1975年图灵奖获得者、1978年诺贝尔经济学奖获得者、著名学者赫伯特.西蒙 (Herbert Simon) 曾下过一个定义: 如果一个系统,能够通过执行某个过程,就此改进了它的性能,那么这个过程就是学习.由此可看出,学习的目的就是改善性能.

卡耐基梅隆大学机器学习和人工智能教授汤姆.米切尔 (TomMitchell) 在他的经典教材《机器学习》中,给出了更为具体的定义对于某类任务 (Task,简称T) 和某项性能评价准则 (Performance简称P),如果一个计算机在程序T上,以P作为性能度量,随着经验(Experience,简称E) 的积累,不断自我完善,那么我们称计算机程序从经验E进行了学习.

2. 为什么需要机器学习

  • 程序自我升级;
  • 解决那些算法过于复杂,甚至没有已知算法的问题;
  • 在机器学习的过程中,协助人类获得事物的洞见。

3. 机器学习的形式

3.1 建模问题

所谓机器学习,在形式上可近似等同于在数据对象中通过统计、推理的方法,来寻找一个接受特定输入X,并给出预期输出Y功能函数f,即Y=f(a)这个函数以及确定函数的参数被称为模型。

3.2 评估问题

针对已知的输入,函数给出的输出 (预测值) 与实际输出 (目标值)之间存在一定误差,因此需要构建一个评估体系,根据误差大小判定函数的优劣。

3.3 优化问题

学习的核心在于改善性能,通过数据对算法的反复锤炼不断提升函数预测的准确性,直至获得能够满足实际需求的最优解,这个过程就是机器学习。

4. 机器学习的分类

4.1 有监督、无监督、半监督学习

1)有监督学习

在已知数据输出(经过标注的)的情况下对模型进行训练,根据输出进行调整、优化的学习方式称为有监督学习。
在这里插入图片描述

2)无监督学习

没有已知输出的情况下,仅仅根据输入信息的相关性,进行类别的划分。
在这里插入图片描述

3)半监督学习

先通过无监督学习划分类别,再人工标记通过有监督学习方式来预测输出.例如先对相似的水果进行聚类,再识别是哪个类别。

在这里插入图片描述

4)强化学习

通过对不同决策结果的奖励、惩罚,使机器学习系统在经过足够长时间的训练以后,越来越倾向于接近期望结果的输出。

4.2 批量学习、增量学习

1)批量学习

将学习过程和应用过程分开,用全部训练数据训练模型,然后再在应用场景中进行预测,当预测结果不够理想时,重新回到学习过程,如此循环.

2)增量学习

将学习过程和应用过程统一起来,在应用的同时,以增量的方式不断学习新的内容,边训练、边预测.

4.3 基于模型学习、基于实例学习

1) 基于模型学习

根据样本数据,建立用于联系输出和输出的某种数学模型,将待预测输入带入该模型,预测其结果.例如有如下输入输出关系:
在这里插入图片描述

2)基于实例的学习

根据以往经验,寻找与待预测输入最接近的样本,以其输出作为预测结果(从数据中心找答案)例如有如下一组数据:
在这里插入图片描述

5. 机器学习的一般过程

  1. 数据收集,手段如手工采集、设备自动化采集、爬虫等
  2. 数据清洗:数据规范、具有较大误差的、没有意义的数据进行清理注:以上称之为数据处理,包括数据检索、数据挖掘、爬虫…
  3. 选择模型 (算法)
  4. 训练模型
  5. 模型评估
  6. 测试模型
    注:3~6步主要是机器学习过程,包括算法、框架、工具等…
  7. 应用模型
  8. 模型维护

6. 机器学习的基本问题

1)回归问题

根据已知的输入和输出,寻找某种性能最佳的模型,将未知输出的输入代入模型,得到连续的输出.
例如:

  • 根据房屋面积、地段、修建年代以及其它条件预测房屋价格;
  • 根据各种外部条件预测某支股票的价格;
  • 根据农业、气象等数据预测粮食收成;
  • 计算两个人脸的相似度。

2) 分类问题

根据已知的输入和输出,寻找性能最佳的模型,将未知输出的输入带入模型,得到离散的输出,例如:

  • 手写体识别 (10个类别分类问题;
  • 水果、鲜花、动物识别;
  • 工业产品瑕疵检测(良品、次品二分类问题)识别一个句子表达的情绪(正面、负面、中性)。

3)聚类问题

根据已知输入的相似程度,将其划分为不同的群落,例如:。根据一批麦粒的数据,判断哪些属于同一个品种根据客户在电商网站的浏览和购买历史,判断哪些客户对某件商占感兴趣判断哪些客户具有更高的相似度。

4)降维问题

在性能损失尽可能小的情况下,降低数据的复杂度,数据规模缩小都称为降维问题。
在这里插入图片描述

二、数据预处理

1. 数据预处理目的

  • 去除无效数据、不规范数据、错误数据
  • 补齐缺失值
  • 对数据范围、量纲、格式、类型进行统一化处理,更容易进行后续计算

2. 预处理方法

1)标准化(均值移除)

http://www.lryc.cn/news/8350.html

相关文章:

  • FreeRTOS-Tickless低功耗模式 | FreeRTOS十四
  • 实现了统一消息中心的微服务基础框架 JVS,快点赞收藏
  • VMware 安装 OpenWrt 旁路由并配置 PassWall
  • R语言GD包地理探测器分析时报错、得不到结果等情况的解决方案
  • 嵌入式开发:你需要知道的5种简单
  • MVC与MVVM
  • Cortex-M0异常和中断
  • 数据库(6)--存储过程
  • c++ 指针、引用和常量
  • 1、HAL库UART 中断|DMA 自动回显接收数据
  • NPOI - ConditionalFormattingRule
  • JavaのString类这一篇就够了(包含StringBuffer_Builder)
  • C# dataGridView 导出表格 xls NPOI 2.4.1 版本
  • 秒杀项目的消息推送
  • 最近开发及 vue3 几个小总结
  • 代谢组学分享-花青素通过调节氨基酸代谢改善糖尿病肾病的肾功能
  • 超简单!pytorch入门教程:Tensor
  • 如何使用COCO数据集,注意事项
  • 金三银四跳槽季,JAVA面试撸题就来【笑小枫】微信小程序吧~
  • 分享115个HTML电子商务模板,总有一款适合您
  • Python 字符串
  • 总线定义,车载总线:车载etherNet or CAN
  • Python(for和while)循环嵌套及用法
  • 6万字电力行业系统解决方案光伏电站综合安防系统解决方案
  • [Android Studio]Android 数据存储--SQLite数据库存储
  • 学校节能降耗减排方案——能耗监管平台的建设及效果剖析
  • 探索IP地址的应用
  • 点赞破万!阿里面试官总结的2022最新1685页Java面试宝典太全了
  • 项目搭建规范
  • 8.Docker Machine