当前位置: 首页 > news >正文

Spark 3.1.1 shuffle fetch 导致shuffle错位的问题

背景

最近从数据仓库小组那边反馈了一个问题,一个SQL任务出来的结果不正确,重新运行一次之后就没问题了,具体的SQL如下:

select col1,count(1) as cnt
from table1
where dt = '20230202' 
group by col1
having count(1) > 1

这个问题是偶发的,在其运行的日志中会发现如下三类日志:

FetchFailed 
TaskKilled (another attempt succeeded)
ERROR (org.apache.spark.network.shuffle.RetryingBlockFetcher:231) - Failed to fetch block shuffle_4865_2481
283_286, and will not retry (3 retries)

最终在各种同事的努力下,找到了一个Jira:SPARK-34534

分析

直接切入主题,找到对应的类OneForOneBlockFetcher,该类会被NettyBlockTransferService(没开启ESS)和ExternalBlockStoreClient(开启ESS)调用,其中start方法:

public void start() {client.sendRpc(message.toByteBuffer(), new RpcResponseCallback() {@Overridepublic void onSuccess(ByteBuffer response) {try {streamHandle = (StreamHandle) BlockTransferMessage.Decoder.fromByteBuffer(response);logger.trace("Successfully opened blocks {}, preparing to fetch chunks.", streamHandle);// Immediately request all chunks -- we expect that the total size of the request is// reasonable due to higher level chunking in [[ShuffleBlockFetcherIterator]].for (int i = 0; i < streamHandle.numChunks; i++) {if (downloadFileManager != null) {client.stream(OneForOneStreamManager.genStreamChunkId(streamHandle.streamId, i),new DownloadCallback(i));} else {client.fetchChunk(streamHandle.streamId, i, chunkCallback);}}} catch (Exception e) {logger.error("Failed while starting block fetches after success", e);failRemainingBlocks(blockIds, e);}}@Overridepublic void onFailure(Throwable e) {logger.error("Failed while starting block fetches", e);failRemainingBlocks(blockIds, e);}});}

其中的message的初始化在构造方法中:

 if (!transportConf.useOldFetchProtocol() && isShuffleBlocks(blockIds)) {this.message = createFetchShuffleBlocksMsg(appId, execId, blockIds);} else {this.message = new OpenBlocks(appId, execId, blockIds);}

其中transportConf.useOldFetchProtocol 也就是 spark.shuffle.useOldFetchProtocol配置(默认是false),如果是shuffle block的话,就会运行到:createFetchShuffleBlocksMsg方法,对于为什么存在这么一个判断,具体参考SPARK-27665
关键的就是 createFetchShuffleBlocksMsg 方法:
这个方法的作用就是: 构建一个FetchShuffleBlocks(appId, execId, shuffleId, mapIds, reduceIdArr, batchFetchEnabled) 对象,其中里面的值
如图:
在这里插入图片描述
其中这里有一点需要注意:

 long[] mapIds = Longs.toArray(mapIdToReduceIds.keySet());reduceIdArr[i] = Ints.toArray(mapIdToReduceIds.get(mapIds[i]));

这里面对MapIdReduceId 进行了重组(在获得streamHandle的时候内部会根据reduceIdArr构建blocks索引,下文中会说到)会导致和成员变量blockIds的顺序不一致,为什么两者不一致会导致问题呢?
原因在于任务的fetch失败会导致重新进行fetch,如下:

  client.fetchChunk(streamHandle.streamId, i, chunkCallback);

chunkCallback的代码如下:

private class ChunkCallback implements ChunkReceivedCallback {@Overridepublic void onSuccess(int chunkIndex, ManagedBuffer buffer) {// On receipt of a chunk, pass it upwards as a block.listener.onBlockFetchSuccess(blockIds[chunkIndex], buffer);}@Overridepublic void onFailure(int chunkIndex, Throwable e) {// On receipt of a failure, fail every block from chunkIndex onwards.String[] remainingBlockIds = Arrays.copyOfRange(blockIds, chunkIndex, blockIds.length);failRemainingBlocks(remainingBlockIds, e);}}

String[] remainingBlockIds = Arrays.copyOfRange(blockIds, chunkIndex, blockIds.length),此处的chunckIndex就是shuffle blocks的索引下标,也就是下文中numBlockIds组成的数组下标,
但是这个和createFetchShuffleBlocksMsg输出的顺序是不一致的,所以如果发生问题重新fetch的时候,数据有错位,具体可以看:
ShuffleBlockFetcherIterator中的

    if (req.size > maxReqSizeShuffleToMem) {shuffleClient.fetchBlocks(address.host, address.port, address.executorId, blockIds.toArray,blockFetchingListener, this)} else {shuffleClient.fetchBlocks(address.host, address.port, address.executorId, blockIds.toArray,blockFetchingListener, null)}

其中blockFetchingListener回调方法onBlockFetchSuccess会把fetch的block数据和shuffleBlockId一一对应上

ESS端构建blocks的信息

在start方法中,client.sendRpc向对应的ESS发送对应的请求shuffle数据信息,ESS会重新构建blocks的信息,组成StreamHandle(streamId, numBlockIds)返回给请求端:
具体为ExternalBlockHandler的handleMessage方法:

if (msgObj instanceof FetchShuffleBlocks) {FetchShuffleBlocks msg = (FetchShuffleBlocks) msgObj;checkAuth(client, msg.appId);numBlockIds = 0;if (msg.batchFetchEnabled) {numBlockIds = msg.mapIds.length;} else {for (int[] ids: msg.reduceIds) {numBlockIds += ids.length;}}streamId = streamManager.registerStream(client.getClientId(),new ShuffleManagedBufferIterator(msg), client.getChannel());
。。。
callback.onSuccess(new StreamHandle(streamId, numBlockIds).toByteBuffer());

这里的numBlockIds就是OneForOneBlockFetcher中的streamHandle.numChunks
如图:在这里插入图片描述

没有开启ESS端的构建blocks的信息

这里和上面的一样,只不过对应的方法为NettyBlockRpcServerreceive:

      case fetchShuffleBlocks: FetchShuffleBlocks =>val blocks = fetchShuffleBlocks.mapIds.zipWithIndex.flatMap { case (mapId, index) =>if (!fetchShuffleBlocks.batchFetchEnabled) {fetchShuffleBlocks.reduceIds(index).map { reduceId =>blockManager.getLocalBlockData(ShuffleBlockId(fetchShuffleBlocks.shuffleId, mapId, reduceId))}} else {val startAndEndId = fetchShuffleBlocks.reduceIds(index)if (startAndEndId.length != 2) {throw new IllegalStateException(s"Invalid shuffle fetch request when batch mode " +s"is enabled: $fetchShuffleBlocks")}Array(blockManager.getLocalBlockData(ShuffleBlockBatchId(fetchShuffleBlocks.shuffleId, mapId, startAndEndId(0), startAndEndId(1))))}}val numBlockIds = if (fetchShuffleBlocks.batchFetchEnabled) {fetchShuffleBlocks.mapIds.length} else {fetchShuffleBlocks.reduceIds.map(_.length).sum}val streamId = streamManager.registerStream(appId, blocks.iterator.asJava,client.getChannel)logTrace(s"Registered streamId $streamId with $numBlockIds buffers")responseContext.onSuccess(new StreamHandle(streamId, numBlockIds).toByteBuffer)

这里的numBlockIds就是OneForOneBlockFetcher中的streamHandle.numChunks
如图:
在这里插入图片描述
所以在以上两种情况下,只要有重新fetch数据的操作,就会存在数据的错位,导致数据的不准确

解决

直接git cherry-pick对应的commit就行:

git cherry-pick 4e438196114eff2e1fc4dd726fdc1bda1af267da
http://www.lryc.cn/news/8225.html

相关文章:

  • 2月第2周榜单丨飞瓜数据B站UP主排行榜(哔哩哔哩平台)发布!
  • Jdk19 动态编译 Java源码为 Class 文件
  • 安装 GPU 版本的 tensorflow 完整版本
  • BOM编程-设置地址栏上的URL
  • 设计模式之原型模式与建造者模式详解和应用
  • C语言(函数和递归)
  • 快乐的shell命令行
  • 大数据面试题flume篇
  • 零信任-深信服零信任aTrust介绍(5)
  • UVa 1343 The Rotation Game 旋转游戏 IDA* BFS 路径还原
  • 硬件学习 软件Cadence day02 画原理图的基本操作 (键盘快捷键 , 原理图设计流程 , 从开始到导出网表流程)
  • 【python】基于Socket的聊天室Python开发
  • 2023想转行软件测试的看过来,你想要了解的薪资、前景、岗位方向、学习路线都讲明白了
  • TortoiseSVN的使用
  • 操作系统(day09) -- 连续分配管理方式
  • APISpace 带你一起走进西湖美景
  • 傻白探索Chiplet,Design Space Exploration for Chiplet-Assembly-Based Processors(十三)
  • 系统分析师真题2020试卷相关概念一
  • 20230215_数据库过程_渠道业务计算过程
  • 【C++】Expression的学习笔记
  • [数据库迁移]-MySQL常见问题
  • C语言编译过程
  • 前端学习 ---常用标签
  • 2023年PMP考试难不难?
  • Netty 入门
  • 收藏|一文掌握数据分析在企业的实际流程
  • 100ask_imx6ull 输出PWM
  • yolov5编译安卓APP:解决图像上全是检测框
  • 为什么我们需要地图?
  • 攻防世界1.新手练习区