当前位置: 首页 > news >正文

工业缺陷检测数据及代码(附代码)

介绍

目前,基于机器视觉的表面缺陷检测设备已广泛取代人工视觉检测,在包括3C、汽车、家电、机械制造、半导体与电子、化工、制药、航空航天、轻工等多个行业领域得到应用。传统的基于机器视觉的表面缺陷检测方法通常采用常规图像处理算法或人工设计的特征加分类器。一般而言,成像方案通常利用被检测表面或缺陷的不同特性来进行设计。合理的成像方案有助于获得光照均匀、能够清晰反映物体表面缺陷的图像。近年来,基于深度学习的许多缺陷检测方法也被广泛应用于各种工业场景。

与计算机视觉中明确的分类、检测和分割任务相比,缺陷检测的要求非常普遍。实际上,它的要求可以分为三个不同的层次:“缺陷是什么”(分类)、“缺陷在哪里”(定位)和“有多少缺陷”(分割)。
先看下结果
在这里插入图片描述

表面缺陷检测中的关键问题

1)小样本问题

目前,深度学习方法被广泛应用于各种计算机视觉任务,表面缺陷检测通常被视为其在工业领域的特定应用。传统理解认为,深度学习方法不能直接应用于表面缺陷检测的原因是在实际工业环境中,所提供的工业缺陷样本太少。

与ImageNet数据集中的超过140在这里插入图片描述
0万个样本数据相比,表面缺陷检测面临的最关键问题是小样本问题。在许多实际工业场景中,甚至只有几张或几十张的有缺陷图像。事实上ÿ

http://www.lryc.cn/news/69324.html

相关文章:

  • CentOS 安装MongoDB 6.0
  • 美团面试,被拷打了一小时....
  • 017+C语言中函数栈帧的创建与销毁(VS2022环境)
  • 马斯克们叫停 GPT-5,更像是场行为艺术
  • 事务基础知识
  • 国产高性能DSP音频处理芯片的工作原理以及应用领域
  • BEVDet4D 论文学习
  • 【设计模式与范式:创建型】43 | 单例模式(下):如何设计实现一个集群环境下的分布式单例模式?
  • Metal入门学习:绘制渲染三角形
  • python 中常见变量类型
  • SVN使用教程(一)
  • 【5.19】四、性能测试—指标、种类
  • Windows平台上的5种敏捷软件开发(过程)模型
  • 一文实现部署AutoGPT
  • 数值计算 - 误差的来源
  • 【软件测试】5年测试老鸟总结,自动化测试成功实施,你应该知道的...
  • 【Hadoop】二、Hadoop MapReduce与Hadoop YARN
  • Python教程:文件I/O的用法
  • 序员工作1年,每天上班清闲,但却焦虑万分,若是你,你会吗?
  • Bed Bath and Beyond EDI 需求分析
  • 【5.20】五、安全测试——渗透测试
  • java版鸿鹄工程项目管理系统 Spring Cloud+Spring Boot+前后端分离构建工程项目管理系统源代码
  • 大语言模型架构设计
  • SpringBoot整合Swagger2,让接口文档管理变得更简单
  • socket | 网络套接字、网络字节序、sockaddr结构
  • golang-websocket
  • Nginx + fastCGI 实现动态网页部署
  • 精彩回顾 | Fortinet Accelerate 2023·中国区巡展厦门站
  • ChatGPT 和对话式 AI 的未来:2023 年的进展和应用
  • Nginx配置WebSocket(WS)和WebSocket Secure(WSS)的完整指南