当前位置: 首页 > news >正文

YOLO V3 SPP ultralytics 第二节:根据yolo的数据集,生成准备文件和yolo的配置文件

目录

1.  介绍

2. 完整代码

3. 代码讲解

3.1 生成 my_train_data.txt和my_val_data.txt

3.2 生成 my_data.data 文件

3.3  生成 my_yolov3.cfg

3.4 关于my_data_label.names文件


1.  介绍

根据 第一节 的操作,已经生成了下图中圆圈中的部分,而本章的内容就是通过代码生成矩形框中的部分,为后面的工作做准备

  • my_yolov3.cfg 是将官方的yolov3-spp.cfg 网络的配置文件根据自定义的数据集修改得到的自己的网络配置(因为检测的分类个数不同,yolo输出的信息也会不同
  • my_train_data.txt 和 my_val_data.txt 是训练集 / 验证集中,所有图片的完整路径,也就是my_yolo_dataset 中 两个 images 下面的所有图片的路径
  • my_data.data 是分类个数、my_train_data.txt 和 my_val_data.txt这两个文件的路径、以及my_data_label.names 的路径(如果,一开始数据集就是yolo格式的,就不会经过第一节的操作,也不会生成这个.names文件,所以要自己建立

 

2. 完整代码

实现代码为 calculate_dataset.py

"""
该脚本有3个功能:
1.统计训练集和验证集的数据并生成相应.txt文件
2.创建my_data.data文件,记录目标检测的 classes个数, train以及 val数据集文件(.txt)路径和 label.names文件路径
3.根据 yolov3-spp.cfg创建 my_yolov3.cfg文件修改其中的 predictor filters以及 yolo classes参数(这两个参数是根据类别数改变的)
"""
import os# 生成训练集、验证集的所有数据路径文件
def calculate_data_txt(txt_path, dataset_dir):with open(txt_path, "w") as w:for file_name in os.listdir(dataset_dir):       # 遍历数据的标注文件train、val下的labelsif file_name == "classes.txt":continue# 根据标注文件找到对应的图片,图片后缀需要是jpgimg_path = os.path.join(dataset_dir.replace("labels", "images"),file_name.split(".")[0]) + ".jpg"line = img_path + "\n"      # 写入一个数据路径就换行assert os.path.exists(img_path), "file:{} not exist!".format(img_path)w.write(line)# 创建data.data文件,记录分类类别个数、训练集、验证集、分类类别的文件路径
def create_data_data(create_data_path, train_path, val_path, classes_info):with open(create_data_path, "w") as w:w.write("classes={}".format(len(classes_info)) + "\n")  # 记录类别个数w.write("train={}".format(train_path) + "\n")           # 记录训练集对应txt文件路径w.write("valid={}".format(val_path) + "\n")             # 记录验证集对应txt文件路径w.write("names=data/my_data_label.names" + "\n")        # 记录label.names文件路径# 创建yolo v3 spp的配置信息
def change_and_create_cfg_file(classes_info, save_cfg_path="./cfg/my_yolov3.cfg"):filters_lines = [636, 722, 809]classes_lines = [643, 729, 816]cfg_lines = open(cfg_path, "r").readlines()for i in filters_lines:assert "filters" in cfg_lines[i-1], "filters param is not in line:{}".format(i-1)output_num = (5 + len(classes_info)) * 3    # (x,y,w,h+置信度 + 类别的个数) * 每一个cell生成 3 个预测框cfg_lines[i-1] = "filters={}\n".format(output_num)for i in classes_lines:assert "classes" in cfg_lines[i-1], "classes param is not in line:{}".format(i-1)cfg_lines[i-1] = "classes={}\n".format(len(classes_info))with open(save_cfg_path, "w") as w:w.writelines(cfg_lines)def main():# 统计训练集和验证集的数据并生成相应 txt文件train_txt_path = "data/my_train_data.txt"val_txt_path = "data/my_val_data.txt"calculate_data_txt(train_txt_path, train_annotation_dir)        # 所有训练集的路径calculate_data_txt(val_txt_path, val_annotation_dir)            # 所有验证集的路径# 获取检测的所有类别classes_info = [line.strip() for line in open(classes_label, "r").readlines() if len(line.strip()) > 0]# 创建data.data文件,记录classes个数, train以及val数据集文件(.txt)路径和 label.names文件路径create_data_data("./data/my_data.data", train_txt_path, val_txt_path, classes_info)# 根据yolov3-spp.cfg创建my_yolov3.cfg文件修改其中的predictor filters以及yolo classes参数(这两个参数是根据类别数改变的)change_and_create_cfg_file(classes_info)if __name__ == '__main__':train_annotation_dir = "./my_yolo_dataset/train/labels"             # 训练集的标注文件val_annotation_dir = "./my_yolo_dataset/val/labels"                 # 验证集的标注文件classes_label = "./data/my_data_label.names"                        # 检测的分类labelcfg_path = "./cfg/yolov3-spp.cfg"                                   # 官方的yolov3-spp 的配置文件assert os.path.exists(train_annotation_dir), "train_annotation_dir not exist!"assert os.path.exists(val_annotation_dir), "val_annotation_dir not exist!"assert os.path.exists(classes_label), "classes_label not exist!"assert os.path.exists(cfg_path), "cfg_path not exist!"main()

3. 代码讲解

代码有些部分自己又加了些注释,这里会挑着讲解

首先将相关路径设定好

3.1 生成 my_train_data.txt和my_val_data.txt

 

然后生成数据集图片的路径,这里训练集和测试集一样,只讲解训练集

对于训练集来说,写入my_train_data.txt 文件。

 其中,file_name 就是labels 下面文件名,因为这里文件名就是图片的名称。通过路径替换就能、后缀替换就可以找到images所有的图片完整路径,写入my_train_data.txt 文件即可

生成的my_train_data.txt 和my_val_data.txt 如下:

 

3.2 生成 my_data.data 文件

代码如下

 

其中,classes_info 信息如下:['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] ,其实就是分类的名称

然后,进入create_data_data 函数内部,将对应的文件路径写入即可

 

my_data.data 文件

3.3  生成 my_yolov3.cfg

因为不同检测任务的分类个数可能不同,因此需要更改yolo的配置信息

 

实现的方式如下:

因为yolo输出是三个尺度的,而 filters_lines = [636, 722, 809] classes_lines = [643, 729, 816]就是对应三个尺度的信息。除了检测的类别更改自定义数据集的类别个数外。预测框输出的tensor也和类别有关

 

如下,官方的classes 是coco所以是80类别。这里使用的是pascal voc 所以是20类别

75 = (x、y、w、h+置信度 + 类别个数)* 3(每一个cell生成3个预测框)  = 25 * 3

官方是  (5 + 80)*3 = 255

 

3.4 关于my_data_label.names文件

如果本身就是yolo 数据集的话,是不需要进行第一节的操作的

那么这个文件my_data_label.names是不存在的,需要手工建立,如下:

只需要更改文件名就行了

 

http://www.lryc.cn/news/69067.html

相关文章:

  • camunda流程引擎connector如何使用
  • ECO基本概念:pre-mask eco gen patch flow
  • 【初学人工智能原理】【4】梯度下降和反向传播:能改(下)
  • 微信小程序路由传参
  • 深入篇【C++】类与对象:再谈构造函数之初始化列表与explicit关键字
  • 广东棒球发展建设·棒球1号位
  • 浅谈PMO对组织战略的支持︱美团骑行事业部项目管理中心负责人边国华
  • 互联网医院资质代办|互联网医院牌照的申请流程
  • 网络:DPDK复习相关知识点_2
  • 阿里云大学考试Java中级题目及解析-java中级
  • 【星戈瑞】Sulfo-CY3-COOH磺化/水溶性Cyanine3羧酸1121756-11-3
  • Java NIO和IO的主要区别
  • SQL查询语句
  • 四象限法进程调度
  • 蓝桥杯拿到一等奖,并分享经验
  • vue3。 Cannot use JSX unless the ‘–jsx’ flag is provided. ts(17004)
  • HVV面试题目总结
  • Access denied for user ‘root‘@‘localhost‘ (using password:YES) 解决方案
  • 为什么C++这么复杂还不被淘汰?
  • 内存泄漏的原因,内存泄漏如何避免?内存泄漏如何定位?
  • 关于全志T113开发板接7寸LCD屏幕显示异常问题的解决方案
  • SpringMVC第四阶段:Controller中如何接收请求参数
  • 第三十回: LisvtView响应事件
  • 重磅!用友荣登全球5强
  • 计算机组成原理实验报告二-认识汇编语言
  • 都说计算机今年炸了,究竟炸到什么程度呢?
  • 0Ω的电阻作用
  • 02 PostGIS常用空间分析函数
  • [Golang] 管理日志信息就用Zap包
  • 【pytest】执行环境切换的两种解决方案