当前位置: 首页 > news >正文

【论文阅读】Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning

论文下载
GitHub
bib:

@INPROCEEDINGS{,title		= {Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning},author	= {Eric Arazo and Diego Ortego and Paul Albert and Noel E O'Connor and Kevin McGuinness},booktitle	= {IJCNN},year		= {2020},pages     = {1--8}
}

1. 摘要

Semi-supervised learning, i.e. jointly learning from labeled and unlabeled samples, is an active research topic due to its key role on relaxing human supervision.

总览半监督学习。

In the context of image classification, recent advances to learn from unlabeled samples are mainly focused on consistency regularization methods that encourage invariant predictions for different perturbations of unlabeled samples.

提到半监督分类中的一致性正则。

We, conversely, propose to learn from unlabeled data by generating soft pseudo-labels using the network predictions.

提到本文中适用了伪标签技术(soft pseudo-labels)。

We show that a naive pseudo-labeling overfits to incorrect pseudo-labels due to the so-called confirmation bias and demonstrate that mixup augmentation and setting a minimum number of labeled samples per mini-batch are effective regularization techniques for reducing it.

核心的贡献。提出了确认偏差(confirmation bias),本文贡献是证明了mixup augmentationsetting a minimum number of labeled samples per mini-batch是有效减少确认偏差的正则技术。

The proposed approach achieves state-of-the-art results in CIFAR-10/100, SVHN, and Mini-ImageNet despite being much simpler than other methods.

These results demonstrate that pseudo-labeling alone can outperform consistency regularization methods, while the opposite was supposed in previous work.

这一点就很令人惊讶了,伪标签技术的方法超过了一致性正则的方法。还没看原文,应该是还没有出现FixMatchFlexMatch方法。

2. 算法描述

符号意义
D l = { ( x i , y i ) } i = 1 N l D_l = \{(x_i, y_i)\}^{N_l}_{i=1} Dl={(xi,yi)}i=1Nl有标记数据
D u = { x i } i = 1 N u D_u = \{x_i\}^{N_u}_{i=1} Du={xi}i=1Nu无标记数据
D ~ u = { ( x i , y ~ i } i = 1 N \widetilde{D}_u = \{(x_i, \widetilde{y}_i\}^{N}_{i=1} D u={(xi,y i}i=1N训练数据,其中对于有标记数据 y ~ i \widetilde{y}_i y i表示真实标签,对于无标记数据 y ~ i \widetilde{y}_i y i表示对应伪标签。
h θ h_{\theta} hθ模型及对应的参数 θ \theta θ

经典的交叉熵损失函数:
ℓ ∗ ( θ ) = − ∑ i = 1 N y ~ i T log ⁡ ( h θ ( x i ) ) (1) \ell^*(\theta) = -\sum_{i=1}^{N}\widetilde{y}_i^{\mathsf{T}}\log(h_{\theta}(x_i)) \tag{1} (θ)=i=1Ny iTlog(hθ(xi))(1)
Note:

In particular, we store the softmax predictions h θ ( x i ) h_{\theta}(x_i) hθ(xi) of the network in every mini-batch of an epoch and use them to modify the soft pseudo-label y ~ \widetilde{y} y for the N u N_u Nu unlabeled samples at the end of every epoch.

We proceed as described from the second to the last training epoch, while in the first epoch we use the softmax predictions for the unlabeled samples from a model trained in a 10 epochs warm-up phase using the labeled data subset D u D_u Du.

Soft pseudo-labels在本文中表示上一个阶段网络对于无标记样本的预测。注意区别于Hard pseudo-labelsSoft pseudo-labels不是one-hot向量,而是对于样本预测的概率向量(softmax)。

Two Regularizations:
ℓ = ℓ ∗ + λ A R A + λ H R H (2) \ell = \ell^*+\lambda_A R_A + \lambda_H R_H \tag{2} =+λARA+λHRH(2)
where

  • R A = ∑ c = 1 C p c log ⁡ ( p c h ‾ c ) R_A = \sum_{c=1}^{C}p_c\log(\frac{p_c}{\overline{h}_c}) RA=c=1Cpclog(hcpc);
  • R H = − 1 N ∑ i = 1 N ∑ c = 1 C h θ c ( x i ) log ⁡ ( h θ c ( x i ) ) R_H = -\frac{1}{N}\sum_{i=1}^{N}\sum_{c=1}^{C}h_{\theta}^c(x_i) \log(h_{\theta}^c(x_i)) RH=N1i=1Nc=1Chθc(xi)log(hθc(xi)).

R A R_A RA不鼓励将所有样本分配到单个类。其中 p c p_c pc表示类别 c c c的先验概率分布, h ‾ c \overline{h}_c hc表示模型在数据集中所有 c c c类别样本中的平均概率(softmax)。意思是本来有猫有狗的类别,网络为了省事,直接不管三七二十一,直接预测一个猫,这个现象在不平衡数据集上很容易出现。

R H R_H RHentropy regularization)鼓励每个软伪标记的概率分布集中在单个类上,避免了网络可能因弱引导而陷入的局部最优。这一点容易理解,就是对于一个样本,鼓励预测的类的概率远远大于其他类别。

Confirmation bias:

Overfitting to incorrect pseudo-labels predicted by the network is known as confirmation bias.
It is natural to think that reducing the confidence of the network on its predictions might alleviate this problem and improve generalization.

Note: 这里将确认偏差(confirmation bias)定义为网络对于不正确伪标签的过拟合。降低对于不正确标签的权重可以缓解这一现象。

mixup regularization:

Recently, mixup data augmentation introduced a strong regularization technique that combines data augmentation with label smoothing, which makes it potentially useful to deal with this bias.

Question:

  • mixup的细节,在单个批次中,怎么mixup?
  • mixup样本的标签如何确定?

setting a minimum number of labeled samples per mini-batch:

Oversampling the labelled examples by setting a minimum number of labeled samples per mini-batch k (as done in other works provides a constant reinforcement with correct labels during training, reducing confirmation bias and helping to produce better pseudo-labels.

Question:

  • 单个批次样本如何配置,多少个有标记数据,多少个无标记数据?
http://www.lryc.cn/news/67348.html

相关文章:

  • 三次输错密码后,系统是怎么做到不让我继续尝试的?
  • 医学影像系统源码,三维后处理和重建 PACS源码
  • golang汇编之函数(四)
  • 成都爱尔李晓峰主任:眼睛干到发出求救信号,快注意!
  • HiEV独家 | 比亚迪高阶智驾终于来了 ,新款汉首发,多车型将搭载
  • 全面解析Linux指令和权限管理
  • C++ enum 和enum class
  • 设计模式之中介者模式
  • DJ5-8 磁盘存储器的性能和调度
  • springboot+vue留守儿童爱心网站(源码+文档)
  • 数字设计小思 - 谈谈非理想时钟的时钟偏差
  • 智慧厕所引导系统的应用
  • 眼球追踪、HDR、VST,从代码挖掘Valve下一代VR头显
  • 【MYSQL】聚合函数和单表/多表查询练习、子查询、内外连接
  • 分布式数据库集成解决方案
  • 如何配置静态路由?这个实例详解交换机的静态路由配置
  • OpenCV教程——图像操作。读写像素值,与/或/非/异或操作,ROI
  • Winforms不可见组件开发
  • 静态链接库与动态链接库
  • ffmpeg 抓取一帧数据
  • 学好数据结构的秘诀
  • IT知识百科:什么是下一代防火墙和IPS?
  • 常量指针和指针常量, top-level const和low-level const
  • 【iOS】-- GET和POST(NSURLSession)
  • @RequestBody,@RequestParam,@RequestPart应用场景和区别
  • libevent高并发网络编程 - 02_libevent缓冲IO之bufferevent
  • 院内导航移动导诊服务体系,院内导航怎么实现?
  • MCTP协议和NCSI
  • Jmeter接口测试流程详解
  • 怎样使用Web自动化测试减少手动劳动?以百度网站为例