当前位置: 首页 > news >正文

涉及红外的数据集

来源
红外和可见光的联合任务相关数据集 - 知乎

LLVIP Dataset(RGB-T Pedestrian Detection)

Jia X, Zhu C, Li M, et al. LLVIP: A visible-infrared paired dataset for low-light vision[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 3496-3504.

bupt-ai-cz/LLVIP: LLVIP: A Visible-infrared Paired Dataset for Low-light Vision (github.com)​github.com/bupt-ai-cz/LLVIPicon-default.png?t=N3I4https://link.zhihu.com/?target=https%3A//github.com/bupt-ai-cz/LLVIP

适用方向:热红外和可见光行人检测

LLVIP数据集是在时间和空间上严格对齐的数据对。用于暗光条件下的红外和可见光的行人检测算法。

M3FD Dataset(RGB-T Object Detection)

Jinyuan Liu, Xin Fan*, Zhangbo Huang, Guanyao Wu, Risheng Liu , Wei Zhong, Zhongxuan Luo,“Target-aware Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection”, IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2022.(Oral)

dlut-dimt/TarDAL: CVPR 2022 | Target-aware Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection. (github.com)​github.com/dlut-dimt/TarDALicon-default.png?t=N3I4https://link.zhihu.com/?target=https%3A//github.com/dlut-dimt/TarDAL

适用方向:热红外和可见光图像目标检测

DUT-VTUAV Dataset(Visble-thermal UAV Tracking)

Zhang P, Zhao J, Wang D, et al. Visible-thermal UAV tracking: A large-scale benchmark and new baseline[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 8886-8895.

zhang-pengyu/DUT-VTUAV: Visible-Thermal UAV Tracking: A Large-Scale Benchmark (CVPR2022) (github.com)​github.com/zhang-pengyu/DUT-VTUAVicon-default.png?t=N3I4https://link.zhihu.com/?target=https%3A//github.com/zhang-pengyu/DUT-VTUAV

适用方向:Visble-thermal UAV Tracking

一个新的数据集,用于无人机的单目标跟踪。基于热红外和可见光图像。

KAIST Dataset(RGB-T Pedestrian Detection)

S. Hwang, J. Park, N. Kim, Y. Choi and I. S. Kweon, "Multispectral pedestrian detection: Benchmark dataset and baseline," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1037-1045, doi: 10.1109/CVPR.2015.7298706.

SoonminHwang/rgbt-ped-detection: KAIST Multispectral Pedestrian Detection Benchmark [CVPR '15] (github.com)​github.com/SoonminHwang/rgbt-ped-detectionicon-default.png?t=N3I4https://link.zhihu.com/?target=https%3A//github.com/SoonminHwang/rgbt-ped-detection

适用方向:热红外和可见光的联合行人检测

FLIR Dataset(RGB-T object detection)

FREE - FLIR Thermal Dataset for Algorithm Training​www.flir.com/oem/adas/adas-dataset-form/正在上传…重新上传取消icon-default.png?t=N3I4https://link.zhihu.com/?target=https%3A//www.flir.com/oem/adas/adas-dataset-form/

适用方向:热红外和可见光的联合目标检测

10k张可将光-红外图像对,但是没有对准,进行融合前需校正。

RoadScene Dataset(aligned infrared and visible images)

frostcza/RoadScene: Datasets: road-scene-infrared-visible-images, for feature matching, image registration, and image fusion (github.com)​github.com/frostcza/RoadSceneicon-default.png?t=N3I4https://link.zhihu.com/?target=https%3A//github.com/frostcza/RoadScene

适用方向:红外和可见光图像融合

数据来源:从FLIR数据集中选取出,经过精细配准得到。

该数据集为对齐的图片,没有语义标签

Freiburg Thermal Dataset(仅有数据,没有标注)

J. Vertens, J. Zürn and W. Burgard, "HeatNet: Bridging the Day-Night Domain Gap in Semantic Segmentation with Thermal Images," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 8461-8468, doi: 10.1109/IROS45743.2020.9341192.

http://thermal.cs.uni-freiburg.de/​thermal.cs.uni-freiburg.de/icon-default.png?t=N3I4https://link.zhihu.com/?target=http%3A//thermal.cs.uni-freiburg.de/

LSOTB-TIR(Thermal Infrared Object Tracking)

LSOTB-TIR: A Large-Scale High-Diversity Thermal Infrared Object Tracking Benchmark

QiaoLiuHit/LSOTB-TIR: LSOTB-TIR: A Large-Scale High-Diversity Thermal Infrared Object Tracking Benchmark (ACM MM2020) (github.com)​github.com/QiaoLiuHit/LSOTB-TIR

适用方向:Thermal Infrared Object Tracking

http://www.lryc.cn/news/67298.html

相关文章:

  • 网络编程(TCP与UDP协议)
  • 专业恢复电脑数据软件Easyrecovery16
  • Java报表中AIX字体丢失的解决方案
  • postgresql数据库linux centos7 安装
  • IDEA配置Maven教程(超详细版~)
  • springMvc自定义参数校验器及基础使用
  • Java基础之ConcurrentHashMap答非所问
  • 「锂」清思绪,触达未来 | 锂电池企业如何实现数字化破局?
  • 量化散户交易数据:追涨爆亏99%,杀跌少赚28倍?| 追涨杀跌一时爽,散户钱包火葬场?【邢不行】
  • Eclipse字体大小设置的5个步骤
  • qt creator添加build步骤删除某个文件
  • 四. AMS源码分析
  • OpenGL进阶 | 绘制一个三角形
  • CSAPP Lab3- bufbomb
  • 分布式系统之CAP定理介绍
  • vcomp140.dll怎么安装?提示vcomp140.dll丢失怎样修复?
  • CA OpenSSL自签名证书(服务器/客户端)
  • 计算机视觉(4)—— 未有深度学习之前
  • 怎么获取winform中动态代码生成的控件的状态
  • Windows安装Maven并配置环境
  • 致力于中小企业JavaEE企业级快速开发平台、后台框架平台
  • 【神经网络】tensorflow实验9--分类问题
  • LeetCode2. 两数相加
  • 基于无线传感网络(WSN)的目标跟踪技术(Matlab代码实现)
  • 百度发布首个可信AI工具集TrustAI,助力数据分析与增强
  • 电力系统负荷与电价预测优化模型(Matlab代码实现)
  • asp.net+C#超市商品进销存管理系统
  • 轻量级K8s发行版的五大优势,助力企业快速拥抱边缘计算
  • 【深入理解redis】数据结构
  • 《计算机网络—自顶向下方法》 第三章Wireshark实验:DNS协议分析