当前位置: 首页 > news >正文

武忠祥老师每日一题||不定积分基础训练(四)

∫ d x 1 + x 3 \int \frac{\rm dx}{1+x^3} 1+x3dx
解法一:
待定系数法:
∫ d x 1 + x 3 \int \frac{dx}{1+x^3} 1+x3dx
= ∫ d x ( 1 + x ) ( x 2 − x + 1 ) =\int \frac{dx}{(1+x)(x^2-x+1)} =(1+x)(x2x+1)dx
= 1 3 ∫ ( 1 x + 1 + − x + 2 x 2 − x + 1 ) d x =\frac{1}{3} \int(\frac{1}{x+1} +\frac{-x+2}{x^2-x+1})\,{\rm d}x =31(x+11+x2x+1x+2)dx
= 1 3 [ ln ⁡ ∣ x + 1 ∣ − 1 2 ∫ ( 2 x − 1 ) − 3 x 2 − x + 1 d x ] =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{2}\int\frac{(2x-1)-3}{x^2-x+1}\,{\rm d}x] =31[lnx+121x2x+1(2x1)3dx]
= 1 3 [ ln ⁡ ∣ x + 1 ∣ − 1 6 ∫ d ( x 2 − x + 1 ) x 2 − x + 1 + 1 2 ∫ 1 ( x − 1 2 ) 2 + 3 4 d x =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{6}\int\frac{d(x^2-x+1)}{x^2-x+1}+\frac{1}{2}\int\frac{1}{(x-\frac{1}{2})^2+\frac{3}{4}}\,{\rm d}x =31[lnx+161x2x+1d(x2x+1)+21(x21)2+431dx
= 1 3 [ ln ⁡ ∣ x + 1 ∣ − 1 6 ln ⁡ ∣ x 2 − x + 1 ∣ + 1 2 × 1 3 2 arctan ⁡ x − 1 2 3 2 + C =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{6}\ln\lvert x^2-x+1\rvert+\frac{1}{2}\times\frac{1}{\frac{\sqrt{3}}{2}}\arctan {\frac{x-\frac{1}{2}}{\frac{\sqrt{3}}{2}}}+C =31[lnx+161lnx2x+1+21×23 1arctan23 x21+C
= 1 3 [ ln ⁡ ∣ x + 1 ∣ − 1 6 ln ⁡ ∣ x 2 − x + 1 ∣ + 1 3 arctan ⁡ 2 x − 1 3 + C =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{6}\ln\lvert x^2-x+1\rvert+\frac{1}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}+C =31[lnx+161lnx2x+1+3 1arctan3 2x1+C


草稿:
原式 = ∫ ( A x + 1 + B x + C x 2 − x + 1 ) d x 原式=\int( \frac{A}{x+1}+\frac{Bx+C}{x^2-x+1})\,{\rm d}x 原式=(x+1A+x2x+1Bx+C)dx
则 A ( x 2 − x + 1 ) + ( B x + C ) ( x + 1 ) = 1 则A(x^2-x+1)+(Bx+C) (x+1)=1 A(x2x+1)+(Bx+C)(x+1)=1
即 A + B = 0 ; − A + B + C = 0 ; A + C = 1 即A+B=0;-A+B+C=0;A+C=1 A+B=0;A+B+C=0;A+C=1
解得 C = 2 3 , A = 1 3 , B = − 1 3 解得C=\frac{2}{3},A=\frac{1}{3},B= -\frac{1}{3} 解得C=32,A=31,B=31


解法二:
灵活应用加项减项
可以看武忠祥老师每日一题||不定积分基础训练(三)
∫ 1 1 + x 3 d x \int \frac{1}{1+x^3}\,{\rm d}x 1+x31dx
= 1 2 ∫ ( 1 + x ) + ( 1 − x ) 1 + x 3 d x =\frac{1}{2}\int \frac{(1+x)+(1-x)}{1+x^3}\,{\rm d}x =211+x3(1+x)+(1x)dx
= 1 2 ∫ ( 1 + x ) + ( 1 − x ) ( 1 − x + x 2 ) ( 1 + x ) =\frac{1}{2}\int\frac{(1+x)+(1-x)}{(1-x+x^2)(1+x)} =21(1x+x2)(1+x)(1+x)+(1x)
= 1 2 [ 2 3 arctan ⁡ 2 x − 1 3 + ln ⁡ ∣ x + 1 ∣ − 1 3 ln ⁡ ∣ x 3 + 1 ∣ ] + C =\frac{1}{2}[\frac{2}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}+\ln\lvert x+1\rvert-\frac{1}{3}\ln \lvert x^3+1 \rvert]+C =21[3 2arctan3 2x1+lnx+131lnx3+1∣]+C


类题拓展:
∫ x 1 + x 3 d x \int \frac{x}{1+x^3}\,{\rm d}x 1+x3xdx
= 1 2 ∫ ( 1 + x ) − ( 1 − x ) 1 + x 3 d x =\frac{1}{2}\int \frac{(1+x)-(1-x)}{1+x^3}\,{\rm d}x =211+x3(1+x)(1x)dx
= 1 2 [ 2 3 arctan ⁡ 2 x − 1 3 − ( ln ⁡ ∣ x + 1 ∣ − 1 3 ln ⁡ ∣ x 3 + 1 ∣ ) ] + C =\frac{1}{2}[\frac{2}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}-(\ln\lvert x+1\rvert-\frac{1}{3}\ln \lvert x^3+1 \rvert)]+C =21[3 2arctan3 2x1(lnx+131lnx3+1∣)]+C

http://www.lryc.cn/news/64536.html

相关文章:

  • 记一次产线打印json导致的redis连接超时
  • FPGA入门系列12--RAM的使用
  • 【三十天精通Vue 3】第二十六天 Vue3 与 TypeScript 最佳实践
  • ffmpeg-mov-metadate不识别Bug修复
  • (8)(8.6) 引导程序更新
  • 汽车电路图、原理框图、线束图、元器件布置图的识读技巧与要点
  • ( 数组和矩阵) 667. 优美的排列 II ——【Leetcode每日一题】
  • 【python基础语法七】python内置函数和内置模块
  • 81. read readline readlines 读取文件的三种方法
  • 【社区图书馆】【图书活动第四期】
  • webpack学习指南(上)
  • 刷题记录˃ʍ˂
  • Word2vec原理+实战学习笔记(二)
  • 什么是Java的多线程?
  • “use strict“是什么? 使用它有什么优缺点?
  • 【C++】C++11常用特性总结
  • 泛型——List 优于数组
  • JavaScript中对象的定义、引用和复制
  • JavaScript通过函数异常处理来输入圆的半径,输出圆的面积的代码
  • Ubuntu 安装 Mysql
  • 【五一创作】【Midjourney】Midjourney 连续性人物创作 ② ( 获取大图和 Seed 随机种子 | 通过 seed 随机种子生成类似图像 )
  • 分布式事务 --- Seata事务模式、高可用
  • SQL(基础)
  • 「OceanBase 4.1 体验」OceanBase 4.1社区版的部署及使用体验
  • 计算机操作系统实验:银行家算法模拟
  • 机器学习:多项式拟合分析中国温度变化与温室气体排放量的时序数据
  • 一个 24 通道 100Msps 逻辑分析仪
  • 使用Process Explorer和Dependency Walker排查C++程序中dll库动态加载失败问题
  • 网工Python:如何使用Netmiko的SCP函数进行文件传输?
  • 题目 3166: 蓝桥杯2023年第十四届省赛真题-阶乘的和--不能完全通过,最好情况通过67.