当前位置: 首页 > news >正文

Advanced Math Math Analysis |01 Limits, Continuous

Advanced Math & Math Analysis |01 Limits, Continuous

Note: For simple definitions and corollaries, we will not elaborate.

文章目录

  • Advanced Math & Math Analysis |01 Limits, Continuous
    • Some easy knowledge
      • Mathematical induction
      • Some equation of trigonometric function
      • Inequality
    • Limits of sequence
    • Continuity and Limits of Functions

Some easy knowledge

Mathematical induction

Theorem
Let T(n)T(n)T(n) is a proposition if:

(1) T(1)T(1)T(1) is true;

(2)let T(k)(k≥1)T(k)(k\ge 1)T(k)(k1) is true;

(3) prove: T(k+1)T(k+1)T(k+1)is true.

So T(n)T(n)T(n) is true.

Example

Let n≥1n\ge 1n1 and n∈Nn\in \mathbb{N}nN,prove

n!<(n+12)nn!< \left(\frac{n+1}{2}\right)^nn!<(2n+1)n

Proof

When n=2n = 2n=2, 2!=2<94=(2+12)22! = 2 < \frac{9}{4} = \left( \frac{2 + 1}{2} \right)^22!=2<49=(22+1)2, and the proposition holds.

Suppose the proposition holds when n=k(k≥2)n = k (k \geq 2)n=k(k2), that is, k!<(k+12)kk! < \left( \frac{k + 1}{2} \right)^k k!<(2k+1)k

When n=k+1n = k + 1n=k+1,

(k+1)!=k!(k+1)<(k+22⋅k+1k+2)k⋅(k+1)=(k+22)k⋅(k+1)k+1(k+2)k=(k+2)k+12k⋅(k+1k+2)k+1=2(k+22)k+1⋅1(k+2k+1)k+1=2(k+22)k+1⋅1(1+1k+1)k+1\begin{align*} (k + 1)!&= k!(k + 1)\\ &< \left( \frac{k + 2}{2} \cdot \frac{k + 1}{k + 2} \right)^k \cdot (k + 1)\\ &= \left( \frac{k + 2}{2} \right)^k \cdot \frac{(k + 1)^{k + 1}}{(k + 2)^k}\\ &= \frac{(k + 2)^{k + 1}}{2^k} \cdot \left( \frac{k + 1}{k + 2} \right)^{k + 1}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( \frac{k + 2}{k + 1} \right)^{k + 1}}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( 1 + \frac{1}{k + 1} \right)^{k + 1}} \end{align*} (k+1)!=k!(k+1)<(2k+2k+2k+1)k(k+1)=(2k+2)k(k+2)k(k+1)k+1=2k(k+2)k+1(k+2k+1)k+1=2(2k+2)k+1(k+1k+2)k+11=2(2k+2)k+1(1+k+11)k+11

By (1+x)n≥1+nx(1+x)^n\ge 1+nx(1+x)n1+nx,x∈(−1,+∞)x\in(-1,+\infty)x(1,+),n∈N+n\in \mathbb{N}_+nN+, we have

(1+1k+1)k+1>1+(k+1)⋅1k+1=2\left( 1 + \frac{1}{k + 1} \right)^{k + 1} > 1 + (k + 1) \cdot \frac{1}{k + 1} = 2 (1+k+11)k+1>1+(k+1)k+11=2 So (k+1)!<2(k+22)k+1⋅12=(k+22)k+1(k + 1)! < 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{2} = \left( \frac{k + 2}{2} \right)^{k + 1} (k+1)!<2(2k+2)k+121=(2k+2)k+1

Thus, when n=k+1n = k + 1n=k+1, the proposition holds. The proof is completed.

Some equation of trigonometric function

Inequality

Limits of sequence

Example Prove an open interval has no maximum value.

Proof

For any open continue interval (a,b)(a,b)(a,b) can be mapping to (0,1)(0,1)(0,1) , by

f:x−ab−af:\frac{x-a}{b-a}f:baxa

Suppose there exists a $\max {(0,1)} \stackrel{\scriptstyle\triangle}{=} \alpha $ ,we have

0<12α<12⇒12<α+12<1\begin{align*} &0< \frac{1}{2}\alpha <\frac{1}{2} \\ &\Rightarrow \frac{1}{2} < \frac{\alpha +1}{2} <1 \end{align*} 0<21α<2121<2α+1<1

Obviously,

α<α+12\alpha < \frac{\alpha +1}{2}α<2α+1

This contradicts the assumption, so the assumption is wrong.

Example Let T={x∣x∈Qand x>0,x2<2}T = \{ x \mid x \in \mathbb{Q} \text{ and } x > 0, x^2 < 2 \}T={xxQ and x>0,x2<2}. Prove that TTT has no upper bound within Q\mathbb{Q}Q.

Proof Use proof by contradiction. Suppose TTT has a least upper bound within Q\mathbb{Q}Q. Denote sup⁡T=nm\sup T = \frac{n}{m}supT=mn (where m,n∈N∗m, n \in \mathbb{N}^*m,nN and m,nm, nm,n are coprime). Then, it is obvious that:

1<(nm)2<31 < \left( \frac{n}{m} \right)^2 < 3 1<(mn)2<3

Since the square of a rational number cannot equal 2, there are only the following two possibilities: (1) 1<(nm)2<21 < \left( \frac{n}{m} \right)^2 < 21<(mn)2<2: Let 2−n2m2=t2 - \frac{n^2}{m^2} = t2m2n2=t, then 0<t<10 < t < 10<t<1. Let r=n6m2tr = \frac{n}{6m^2}tr=6m2nt. Obviously, nm+r>0\frac{n}{m} + r > 0mn+r>0, and nm+r∈Q\frac{n}{m} + r \in \mathbb{Q}mn+rQ. Since r2=n236m4t2<118tr^2 = \frac{n^2}{36m^4}t^2 < \frac{1}{18}tr2=36m4n2t2<181t, and 2nmr=n23m3t<23t\frac{2n}{m}r = \frac{n^2}{3m^3}t < \frac{2}{3}tm2nr=3m3n2t<32t, we can obtain:
(nm+r)2−2=r2+2nmr−t<0\left( \frac{n}{m} + r \right)^2 - 2 = r^2 + \frac{2n}{m}r - t < 0 (mn+r)22=r2+m2nrt<0
This shows that nm+r∈T\frac{n}{m} + r \in Tmn+rT, which contradicts the fact that nm\frac{n}{m}mn is the least upper bound of TTT. (2) 2<(nm)2<32 < \left( \frac{n}{m} \right)^2 < 32<(mn)2<3: Let n2m2−2=t\frac{n^2}{m^2} - 2 = tm2n22=t, then 0<t<10 < t < 10<t<1. Let r=n6m2tr = \frac{n}{6m^2}tr=6m2nt. Obviously, nm−r>0\frac{n}{m} - r > 0mnr>0, and nm−r∈Q\frac{n}{m} - r \in \mathbb{Q}mnrQ. Since 2nmr=n23m3t<t\frac{2n}{m}r = \frac{n^2}{3m^3}t < tm2nr=3m3n2t<t, we can obtain:
(nm−r)2−2=r2−2nmr+t>0\left( \frac{n}{m} - r \right)^2 - 2 = r^2 - \frac{2n}{m}r + t > 0 (mnr)22=r2m2nr+t>0
This shows that nm−r\frac{n}{m} - rmnr is also an upper bound of TTT, which contradicts the fact that nm\frac{n}{m}mn is the least upper bound of TTT.

Example Caculate

lim⁡n→∞(2n−1)!!(2n)!!\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}nlim(2n)!!(2n1)!!
and
lim⁡n→∞n(2n−1)!!(2n)!!\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}nlimn(2n)!!(2n1)!!

Solve

(1)

lim⁡n→∞(2n−1)!!(2n)!!=0\boxed{\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}=0}nlim(2n)!!(2n1)!!=0

0≤lim⁡n→∞(2n−1)!!(2n)!!=lim⁡n→∞∏i=1n(2i−1)∏i=1n(2i)=lim⁡n→∞(∏i=1n(2i−1)∏i=1n(2i))2≤lim⁡n→∞(∏i=1n(2i−1))2∏i=1n(2i+1)∏i=1n(2i−1)=lim⁡n→∞∏i=1n(2i−1)∏i=1n(2i+1)=lim⁡n→∞12n+1=0\begin{align*} 0\leq \lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}&=\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\\ &=\sqrt{\lim_{n\to \infty}\left( \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\right)^2} \\&\leq \sqrt{\lim_{n\to \infty} \frac{\left(\prod_{i=1}^n (2i-1)\right)^2}{\prod_{i=1}^n (2i+1)\prod_{i=1}^n (2i-1)}}\\ &=\sqrt{\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i+1)}}\\&=\sqrt{\lim_{n\to \infty} \frac{1}{2n+1}} \\&=0 \end{align*}0nlim(2n)!!(2n1)!!=nlimi=1n(2i)i=1n(2i1)=nlim(i=1n(2i)i=1n(2i1))2nlimi=1n(2i+1)i=1n(2i1)(i=1n(2i1))2=nlimi=1n(2i+1)i=1n(2i1)=nlim2n+11=0

(2)

lim⁡n→∞n(2n−1)!!(2n)!!=π2\boxed{\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}}nlimn(2n)!!(2n1)!!=2π

∫0π2sin⁡2nxdx∫0π2sin⁡2n+1xdx≤(∫0π2sin⁡2nxdx)2≤∫0π2sin⁡2nxdx∫0π2sin⁡2n−1xdx⇒(2n−1)!!(2n)!!(2n)!!(2n+1)!!π2≤(∫0π2sin⁡2nxdx)2≤(2n−1)!!(2n)!!(2n−2)!!(2n−1)!!π2⇒π212n+1≤((2n−1)!!(2n)!!)2≤12nπ2\begin{align*} &\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x \int_{0}^{\frac{\pi}{2}}\sin^{2n+1} x\mathrm{d}x \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right) ^2 \leq \int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\int_{0}^{\frac{\pi}{2}}\sin^{2n-1} x\mathrm{d}x \\\Rightarrow & \frac{(2n-1)!!}{(2n)!!}\frac{(2n)!!}{(2n+1)!!}\frac{\pi}{2} \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)^2 \leq \frac{(2n-1)!!}{(2n)!!}\frac{(2n-2)!!}{(2n-1)!!}\frac{\pi}{2} \\ \\\Rightarrow & \frac{\pi}{2} \frac{1}{2n+1}\leq \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n}\frac{\pi}{2} \end{align*} 02πsin2nxdx02πsin2n+1xdx(02πsin2nxdx)202πsin2nxdx02πsin2n1xdx(2n)!!(2n1)!!(2n+1)!!(2n)!!2π(02πsin2nxdx)2(2n)!!(2n1)!!(2n1)!!(2n2)!!2π2π2n+11((2n)!!(2n1)!!)22n12π

So

lim⁡n→∞n(2n−1)!!(2n)!!=π2\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}nlimn(2n)!!(2n1)!!=2π

ExampleCaulate

lim⁡n→∞∑i=0nλian−i\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}nlimi=0nλiani

Solve

lim⁡n→∞∑i=0nλian−i=lim⁡n→∞∑i=0nλn−iai=lim⁡n→∞λn∑i=0naiλi=lim⁡n→∞∑i=0naiλi(1λ)n=lim⁡n→∞anλn(1λ)n−1(1λ−1)=aλ−1\begin{align*} \lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}&=\lim_{n \to \infty}\sum_{i=0}^n \lambda ^{n-i} a_{i}\\ &=\lim_{n \to \infty}\lambda ^{n}\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}\\&=\lim_{n \to \infty}\frac{\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}}{\left(\frac{1}{\lambda}\right) ^{n}} \\ &=\lim_{n \to \infty}\frac{ \frac{ a_{n}}{\lambda ^{n}}}{\left(\frac{1}{\lambda}\right) ^{n-1}\left(\frac{1}{\lambda}-1\right)}\\ &=\frac{a}{\lambda -1} \end{align*} nlimi=0nλiani=nlimi=0nλniai=nlimλni=0nλiai=nlim(λ1)ni=0nλiai=nlim(λ1)n1(λ11)λnan=λ1a

Example Please use Cauchy Convergence Principle prove :A monotonic and bounded sequence must converge.

Proof

Only prove the case where an increasing sequence bounded above must have a limit.

Let’s assume without loss of generality that {xn}\{x_n\}{xn} is an increasing sequence bounded above.

We will use the method of proof by contradiction to show that {xn}\{x_n\}{xn} has a limit.

Suppose that the sequence {xn}\{x_n\}{xn} does not have a limit. According to the Cauchy convergence criterion, there exists ε0>0\varepsilon_0> 0ε0>0 such that for all NNN, there exist n>Nn > Nn>N where

∣xn−xN∣=xn−xN>ε0|x_n - x_N|=x_n - x_N>\varepsilon_0xnxN=xnxN>ε0

Successively take N1=1N_1 = 1N1=1, then there exists n1>N1n_1>N_1n1>N1 such that xn1−x1>ε0x_{n_1}-x_1 >\varepsilon_0xn1x1>ε0; N2=n1N_2 = n_1N2=n1, then there exists n2>n1n_2 > n_1n2>n1 such that

xn2−xn1>ε0⋮Nk=nk−1\begin{align*} x_{n_2}-x_{n_1}>\varepsilon_0\\ \vdots \\ N_k=n_{k - 1}\\ \end{align*}xn2xn1>ε0Nk=nk1
then there exists nk>nk−1n_k>n_{k - 1}nk>nk1 such that xnk−xnk−1>ε0x_{n_k}-x_{n_{k - 1}}>\varepsilon_0xnkxnk1>ε0. Adding up the above - listed inequalities, we get xnk−x1>kε0x_{n_k}-x_1>k\varepsilon_0xnkx1>kε0. For any real number GGG, when k>G−x1ε0k>\frac{G - x_1}{\varepsilon_0}k>ε0Gx1, we have xnk>Gx_{n_k}>Gxnk>G. This contradicts the fact that {xn}\{x_n\}{xn} is bounded above.

Therefore, the sequence {xn}\{x_n\}{xn} has a limit.

Example
Let An=∑k=1nakA_n=\sum_{k = 1}^{n}a_kAn=k=1nak, and lim⁡n→∞An\lim\limits_{n \to \infty}A_nnlimAn exists. {pn}\{p_n\}{pn} is a sequence of positive numbers that is monotonically increasing, and pn→+∞p_n\to+\inftypn+ as n→∞n\to\inftyn. Prove that:

lim⁡n→∞p1a1+p2a2+⋯+pnanpn=0\lim_{n \to \infty}\frac{p_1a_1 + p_2a_2+\cdots + p_na_n}{p_n}=0 nlimpnp1a1+p2a2++pnan=0

Prove

∑i=1npiaipn=∑i=2npi(Ai−Ai−1)+p1A1pn=∑i=1n−1(pi−pi+1)Ai+Anpnpn\begin{align*} \frac{\sum_{i=1}^np_ia_i}{p_n}&=\frac{\sum_{i=2}^np_i(A_i-A_{i-1})+p_1A_1}{p_n}\\ &=\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n} \end{align*} pni=1npiai=pni=2npi(AiAi1)+p1A1=pni=1n1(pipi+1)Ai+Anpn

So

lim⁡n→∞∑i=1npiaipn=lim⁡n→∞∑i=1n−1(pi−pi+1)Ai+Anpnpn=−A+A=0\begin{align*} \lim\limits_{n \to \infty}\frac{\sum_{i=1}^np_ia_i}{p_n} &=\lim\limits_{n \to \infty}\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}\\ &=-A+A=0 \end{align*}nlimpni=1npiai=nlimpni=1n1(pipi+1)Ai+Anpn=A+A=0

Continuity and Limits of Functions

Example Letf(x)f(x)f(x)satisfy the functional equation f(2x)=f(x)f(2x)=f(x)f(2x)=f(x) on (0,+∞)(0, +\infty)(0,+), and
lim⁡x→+∞f(x)=A\lim\limits_{x \to +\infty}f(x) = Ax+limf(x)=A .Prove that
f(x)≡Af(x)\equiv Af(x)A
for x∈(0,+∞)x\in(0, +\infty)x(0,+).

Prove

∀x0∈(0,+∞)\forall x_0 \in (0,+\infty)x0(0,+),we have
f(x0)=f(2x0)=⋯=f(2nx0)f(x_0)=f(2x_0)=\cdots=f(2^nx_0)f(x0)=f(2x0)==f(2nx0)
Let n→∞n \to \inftyn
f(x0)=lim⁡n→∞f(2nx0)=f(lim⁡n→∞2nx0)=f(+∞)=Af(x_0)=\lim_{n\to \infty}f(2^nx_0)=f(\lim_{n\to \infty}2^nx_0)=f(+\infty)=Af(x0)=nlimf(2nx0)=f(nlim2nx0)=f(+)=A

By arbitrariness of x0x_0x0,we have:

f(x)≡Af(x)\equiv A f(x)A

DefinitionnLet f:I→Rf:I\rightarrow\mathbb{R}f:IR be a function. fff is said to be uniformly continuous on III if for every ε>0\varepsilon > 0ε>0, there exists a δ>0\delta>0δ>0 such that for all x1,x2∈Ix_1,x_2\in Ix1,x2I with ∣x1−x2∣<δ|x_1 - x_2|<\deltax1x2<δ, we have ∣f(x1)−f(x2)∣<ε|f(x_1)-f(x_2)|<\varepsilonf(x1)f(x2)<ε.

ExampleIf the function f(x)f(x)f(x) is continuous on [a,+∞)[a, +\infty)[a,+) and
lim⁡x→+∞f(x)=A\lim\limits_{x \to +\infty} f(x) = A x+limf(x)=A
then f(x)f(x)f(x)is uniformly continuous on [a,+∞)[a, +\infty)[a,+).

Prove

Since lim⁡x→+∞f(x)=A\lim\limits_{x \to +\infty} f(x)=Ax+limf(x)=A, for any ε>0\varepsilon> 0ε>0, there exists X>aX > aX>a such that for all x′,x′′>Xx', x'' > Xx,x′′>X, the inequality ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilonf(x)f(x′′)<ε holds. Because f(x)f(x)f(x) is continuous on [a,X+1][a, X + 1][a,X+1], it is uniformly continuous. That is, there exists 0<δ<10 < \delta < 10<δ<1 such that for all x′,x′′∈[a,X+1]x', x'' \in [a, X + 1]x,x′′[a,X+1], when ∣x′−x′′∣<δ|x' - x''| < \deltaxx′′<δ, ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilonf(x)f(x′′)<ε. Then, for all x′,x′′∈[a,+∞)x', x'' \in [a, +\infty)x,x′′[a,+), when ∣x′−x′′∣<δ|x' - x''| < \deltaxx′′<δ, ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilonf(x)f(x′′)<ε.

ExampleLet f(x)f(x)f(x) be continuous on [a,b][a, b][a,b], f(a)=f(b)=0f(a)=f(b) = 0f(a)=f(b)=0, and f+′(a)⋅f−′(b)>0f'_{+}(a)\cdot f'_{-}(b)>0f+(a)f(b)>0. Prove that f(x)f(x)f(x) has at least one zero point in (a,b)(a, b)(a,b).

Prove

  • f+′(a)f'_{+}(a)f+(a): The right - hand derivative of f(x)f(x)f(x) at x=ax = ax=a, defined as f+′(a)=lim⁡x→a+f(x)−f(a)x−a=lim⁡x→a+f(x)x−af'_{+}(a)=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x - a}=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)}{x - a}f+(a)=xa+limxaf(x)f(a)=xa+limxaf(x) (since f(a)=0f(a) = 0f(a)=0).
  • f−′(b)f'_{-}(b)f(b): The left - hand derivative of f(x)f(x)f(x) at x=bx = bx=b, defined as f−′(b)=lim⁡x→b−f(x)−f(b)x−b=lim⁡x→b−f(x)x−bf'_{-}(b)=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)-f(b)}{x - b}=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)}{x - b}f(b)=xblimxbf(x)f(b)=xblimxbf(x) (since f(b)=0f(b)=0f(b)=0).

Since f+′(a)⋅f−′(b)>0f'_{+}(a)\cdot f'_{-}(b)>0f+(a)f(b)>0, we can know that f+′(a)f'_{+}(a)f+(a) and f−′(b)f'_{-}(b)f(b) have the same sign. Then, by the definition of one - sided derivatives, we can find two points x1∈(a,a+δ1)x_1\in(a,a + \delta_1)x1(a,a+δ1) and x2∈(b−δ2,b)x_2\in(b-\delta_2,b)x2(bδ2,b) such that f(x1)f(x_1)f(x1) and f(x2)f(x_2)f(x2) have opposite signs . Then, by the Intermediate Value Theorem, there must be a zero point of f(x)f(x)f(x) in the interval (x1,x2)⊆(a,b)(x_1,x_2)\subseteq(a,b)(x1,x2)(a,b).

Example
(xn−1e1x)(n)=(−1)nxn+1e1x\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}(xn1ex1)(n)=xn+1(1)nex1

By Faà di Bruno’s Formula:

dndxnf(g(x))=∑n!m1!m2!⋯mn!⋅f(m1+m2+⋯+mn)(g(x))⋅∏j=1n(g(j)(x)j!)mj\frac{\mathrm{d}^n}{\mathrm{d}x^n} f(g(x)) = \sum \frac{n!}{m_1! \, m_2! \, \cdots \, m_n!} \cdot f^{(m_1 + m_2 + \cdots + m_n)}(g(x)) \cdot \prod_{j=1}^n \left( \frac{g^{(j)}(x)}{j!} \right)^{m_j} dxndnf(g(x))=m1!m2!mn!n!f(m1+m2++mn)(g(x))j=1n(j!g(j)(x))mj

where:
The summation ∑\sum ranges over all sets of non - negative integers m1,m2,…,mnm_1, m_2, \dots, m_nm1,m2,,mn satisfying:
1⋅m1+2⋅m2+3⋅m3+⋯+n⋅mn=n1 \cdot m_1 + 2 \cdot m_2 + 3 \cdot m_3 + \cdots + n \cdot m_n = n1m1+2m2+3m3++nmn=n

(xn−1e1x)(n)=e1x∑k=0n−1(nk)(n−1)!(n−1−k)!xn−1−k∑1⋅m1+⋯+(n−k)⋅mn−k=n−k(n−k)!m1!⋯mn−k!∏j=1n−k[(−1)jxj+1]mj=M=m1+⋯+mn−ke1x∑k=0n−1(nk)(n−1)!(n−1−k)!xn−1−k⋅(−1)n−k⋅∑(n−k)!m1!⋯mn−k!⋅x−((n−k)+M)=唯一有效项为k=0xn−1⋅(−1)ne1x⋅x−2n=(−1)nxn+1e1x\begin{align*} \left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}&=e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\sum_{\substack{1 \cdot m_1 + \cdots + (n-k) \cdot m_{n-k} = n-k}}\frac{(n-k)!}{m_1!\cdots m_{n-k}!}\prod_{j=1}^{n-k}\left[\frac{(-1)^j}{x^{j+1}}\right]^{m_j}\\ &\stackrel{M=m_1+\cdots +m_{n-k}}{=}e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\cdot (-1)^{n-k} \cdot \sum \frac{(n-k)!}{m_1! \cdots m_{n-k}!} \cdot x^{-((n-k) + M)}\\ &\stackrel{\text{唯一有效项为}k = 0}{=}x^{n-1} \cdot (-1)^n e^{\frac{1}{x}} \cdot x^{-2n} = \frac{(-1)^n}{x^{n+1}} e^{\frac{1}{x}} \end{align*} (xn1ex1)(n)=ex1k=0n1(kn)(n1k)!(n1)!xn1k1m1++(nk)mnk=nkm1!mnk!(nk)!j=1nk[xj+1(1)j]mj=M=m1++mnkex1k=0n1(kn)(n1k)!(n1)!xn1k(1)nkm1!mnk!(nk)!x((nk)+M)=唯一有效项为k=0xn1(1)nex1x2n=xn+1(1)nex1

Mathematical induction is easy

# Advanced  Math & Math Analysis |01 Limits, Continuous `Note: For simple definitions and corollaries, we will not elaborate.`@[toc]
## Some easy knowledge### Mathematical induction>**Theorem**
Let $T(n)$ is a proposition if:
>
>(1) $T(1)$ is true;
>
>(2)let $T(k)(k\ge 1)$ is true;
>
>(3) prove: $T(k+1)$is true.
>
>So $T(n)$ is true.**Example**Let $n\ge 1$ and $n\in \mathbb{N}$,prove $$n!< \left(\frac{n+1}{2}\right)^n$$**Proof**When $n = 2$, $2! = 2 < \frac{9}{4} = \left( \frac{2 + 1}{2} \right)^2$, and the proposition holds.Suppose the proposition holds when $n = k (k \geq 2)$, that is, $$ k! < \left( \frac{k + 1}{2} \right)^k $$When $n = k + 1$, $$ \begin{align*} (k + 1)!&= k!(k + 1)\\ &< \left( \frac{k + 2}{2} \cdot \frac{k + 1}{k + 2} \right)^k \cdot (k + 1)\\ &= \left( \frac{k + 2}{2} \right)^k \cdot \frac{(k + 1)^{k + 1}}{(k + 2)^k}\\ &= \frac{(k + 2)^{k + 1}}{2^k} \cdot \left( \frac{k + 1}{k + 2} \right)^{k + 1}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( \frac{k + 2}{k + 1} \right)^{k + 1}}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( 1 + \frac{1}{k + 1} \right)^{k + 1}} \end{align*} $$ By $(1+x)^n\ge 1+nx$,$x\in(-1,+\infty)$,$n\in \mathbb{N}_+$, we have $$ \left( 1 + \frac{1}{k + 1} \right)^{k + 1} > 1 + (k + 1) \cdot \frac{1}{k + 1} = 2 $$ So $$ (k + 1)! < 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{2} = \left( \frac{k + 2}{2} \right)^{k + 1} $$Thus, when $n = k + 1$, the proposition holds. The proof is completed. ### Some equation of trigonometric function### Inequality## Limits of sequence>**Example** Prove  an open interval has no maximum value.**Proof**For any open continue interval $(a,b)$ can be mapping to $(0,1)$ , by$$f:\frac{x-a}{b-a}$$Suppose there exists a  $\max \{(0,1)\} \stackrel{\scriptstyle\triangle}{=} \alpha $ ,we have$$
\begin{align*}&0< \frac{1}{2}\alpha <\frac{1}{2} \\&\Rightarrow  \frac{1}{2} < \frac{\alpha +1}{2} <1
\end{align*}
$$Obviously,$$\alpha < \frac{\alpha +1}{2}$$This contradicts the assumption, so the assumption is wrong.>**Example** Let $T = \{ x \mid x \in \mathbb{Q} \text{ and } x > 0, x^2 < 2 \}$. Prove that $T$ has no upper bound within $\mathbb{Q}$.**Proof** Use proof by contradiction. Suppose $T$ has a least upper bound within $\mathbb{Q}$. Denote $\sup T = \frac{n}{m}$ (where $m, n \in \mathbb{N}^*$ and $m, n$ are coprime). Then, it is obvious that: $$ 1 < \left( \frac{n}{m} \right)^2 < 3 $$Since the square of a rational number cannot equal 2, there are only the following two possibilities: (1) $1 < \left( \frac{n}{m} \right)^2 < 2$: Let $2 - \frac{n^2}{m^2} = t$, then $0 < t < 1$. Let $r = \frac{n}{6m^2}t$. Obviously, $\frac{n}{m} + r > 0$, and $\frac{n}{m} + r \in \mathbb{Q}$. Since $r^2 = \frac{n^2}{36m^4}t^2 < \frac{1}{18}t$, and $\frac{2n}{m}r = \frac{n^2}{3m^3}t < \frac{2}{3}t$, we can obtain: 
$$ \left( \frac{n}{m} + r \right)^2 - 2 = r^2 + \frac{2n}{m}r - t < 0 $$
This shows that $\frac{n}{m} + r \in T$, which contradicts the fact that $\frac{n}{m}$ is the least upper bound of $T$. (2) $2 < \left( \frac{n}{m} \right)^2 < 3$: Let $\frac{n^2}{m^2} - 2 = t$, then $0 < t < 1$. Let $r = \frac{n}{6m^2}t$. Obviously, $\frac{n}{m} - r > 0$, and $\frac{n}{m} - r \in \mathbb{Q}$. Since $\frac{2n}{m}r = \frac{n^2}{3m^3}t < t$, we can obtain: 
$$ \left( \frac{n}{m} - r \right)^2 - 2 = r^2 - \frac{2n}{m}r + t > 0 $$
This shows that $\frac{n}{m} - r$ is also an upper bound of $T$, which contradicts the fact that $\frac{n}{m}$ is the least upper bound of $T$. >**Example** Caculate
>
>$$\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}$$
>and
>$$\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}$$**Solve**(1)$$\boxed{\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}=0}$$$$\begin{align*}
0\leq \lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}&=\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\\
&=\sqrt{\lim_{n\to \infty}\left( \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\right)^2}
\\&\leq \sqrt{\lim_{n\to \infty} \frac{\left(\prod_{i=1}^n (2i-1)\right)^2}{\prod_{i=1}^n (2i+1)\prod_{i=1}^n (2i-1)}}\\
&=\sqrt{\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i+1)}}\\&=\sqrt{\lim_{n\to \infty} \frac{1}{2n+1}}
\\&=0
\end{align*}$$(2)$$\boxed{\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}}$$$$
\begin{align*}
&\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x \int_{0}^{\frac{\pi}{2}}\sin^{2n+1} x\mathrm{d}x \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)
^2 \leq \int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\int_{0}^{\frac{\pi}{2}}\sin^{2n-1} x\mathrm{d}x
\\\Rightarrow  & \frac{(2n-1)!!}{(2n)!!}\frac{(2n)!!}{(2n+1)!!}\frac{\pi}{2} \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)^2 \leq \frac{(2n-1)!!}{(2n)!!}\frac{(2n-2)!!}{(2n-1)!!}\frac{\pi}{2} \\
\\\Rightarrow  &  \frac{\pi}{2} \frac{1}{2n+1}\leq \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n}\frac{\pi}{2} 
\end{align*}
$$So$$\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}$$> **Example**Caulate
>
>$$\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}$$**Solve**$$
\begin{align*}
\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}&=\lim_{n \to \infty}\sum_{i=0}^n \lambda ^{n-i} a_{i}\\
&=\lim_{n \to \infty}\lambda ^{n}\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}\\&=\lim_{n \to \infty}\frac{\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}}{\left(\frac{1}{\lambda}\right) ^{n}}
\\
&=\lim_{n \to \infty}\frac{ \frac{ a_{n}}{\lambda ^{n}}}{\left(\frac{1}{\lambda}\right) ^{n-1}\left(\frac{1}{\lambda}-1\right)}\\
&=\frac{a}{\lambda -1}
\end{align*}
$$>**Example** Please use Cauchy Convergence Principle prove :A monotonic and bounded sequence must converge.**Proof**Only prove the case where an increasing sequence bounded above must have a limit. Let's assume without loss of generality that $\{x_n\}$ is an increasing sequence bounded above. We will use the method of proof by contradiction to show that $\{x_n\}$ has a limit. Suppose that the sequence $\{x_n\}$ does not have a limit. According to the Cauchy convergence criterion, there exists $\varepsilon_0> 0$ such that for all $N$, there exist $n > N$ where $$|x_n - x_N|=x_n - x_N>\varepsilon_0$$Successively take $N_1 = 1$, then there exists $n_1>N_1$ such that $x_{n_1}-x_1 >\varepsilon_0$; $N_2 = n_1$, then there exists $n_2 > n_1$ such that $$
\begin{align*}
x_{n_2}-x_{n_1}>\varepsilon_0\\ \vdots \\
N_k=n_{k - 1}\\
\end{align*}$$
then there exists $n_k>n_{k - 1}$ such that $x_{n_k}-x_{n_{k - 1}}>\varepsilon_0$. Adding up the above - listed inequalities, we get $x_{n_k}-x_1>k\varepsilon_0$. For any real number $G$, when $k>\frac{G - x_1}{\varepsilon_0}$, we have $x_{n_k}>G$. This contradicts the fact that $\{x_n\}$ is bounded above. Therefore, the sequence $\{x_n\}$ has a limit. >**Example**Let $A_n=\sum_{k = 1}^{n}a_k$, and $\lim\limits_{n \to \infty}A_n$ exists. $\{p_n\}$ is a sequence of positive numbers that is monotonically increasing, and $p_n\to+\infty$ as $n\to\infty$. Prove that:
>
>$$
\lim_{n \to \infty}\frac{p_1a_1 + p_2a_2+\cdots + p_na_n}{p_n}=0
$$  **Prove**$$
\begin{align*}
\frac{\sum_{i=1}^np_ia_i}{p_n}&=\frac{\sum_{i=2}^np_i(A_i-A_{i-1})+p_1A_1}{p_n}\\
&=\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}
\end{align*}
$$So$$
\begin{align*}
\lim\limits_{n \to \infty}\frac{\sum_{i=1}^np_ia_i}{p_n}
&=\lim\limits_{n \to \infty}\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}\\
&=-A+A=0
\end{align*}$$>**Example**15. Let$f(x)$satisfy the functional equation $f(2x)=f(x)$ on $(0, +\infty)$, and 
$\lim\limits_{x \to +\infty}f(x) = A$ .Prove that 
>$$f(x)\equiv A$$
>for $x\in(0, +\infty)$. **Prove**$\forall x_0 \in (0,+\infty)$,we have
$$f(x_0)=f(2x_0)=\cdots=f(2^nx_0)$$
Let $n \to \infty$
$$f(x_0)=\lim_{n\to \infty}f(2^nx_0)=f(\lim_{n\to \infty}2^nx_0)=f(+\infty)=A$$By arbitrariness of $x_0$,we have:$$f(x)\equiv A $$>**Definitionn**Let $f:I\rightarrow\mathbb{R}$ be a function. $f$ is said to be **uniformly continuous** on $I$ if for every $\varepsilon > 0$, there exists a $\delta>0$ such that for all $x_1,x_2\in I$ with $|x_1 - x_2|<\delta$, we have $|f(x_1)-f(x_2)|<\varepsilon$.>**Example**If the function $f(x)$ is continuous on $[a, +\infty)$ and 
>$$\lim\limits_{x \to +\infty} f(x) = A
>$$ 
>then $f(x)$is uniformly continuous on $[a, +\infty)$.  **Prove**Since $\lim\limits_{x \to +\infty} f(x)=A$, for any $\varepsilon> 0$, there exists $X > a$ such that for all $x', x'' > X$, the inequality $|f(x') - f(x'')| < \varepsilon$ holds.  Because $f(x)$ is continuous on $[a, X + 1]$, it is uniformly continuous. That is, there exists $0 < \delta < 1$ such that for all $x', x'' \in [a, X + 1]$, when $|x' - x''| < \delta$,  $|f(x') - f(x'')| < \varepsilon$.  Then, for all $x', x'' \in [a, +\infty)$, when $|x' - x''| < \delta$,  $|f(x') - f(x'')| < \varepsilon$. 
>**Example**Let $f(x)$ be continuous on $[a, b]$, $f(a)=f(b) = 0$, and $f'_{+}(a)\cdot f'_{-}(b)>0$. Prove that $f(x)$ has at least one zero point in $(a, b)$.**Prove**- $f'_{+}(a)$: The right - hand derivative of $f(x)$ at $x = a$, defined as $f'_{+}(a)=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x - a}=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)}{x - a}$ (since $f(a) = 0$).
- $f'_{-}(b)$: The left - hand derivative of $f(x)$ at $x = b$, defined as $f'_{-}(b)=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)-f(b)}{x - b}=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)}{x - b}$ (since $f(b)=0$). Since $f'_{+}(a)\cdot f'_{-}(b)>0$, we can know that $f'_{+}(a)$ and $f'_{-}(b)$ have the same sign. Then, by the definition of one - sided derivatives, we can find two points $x_1\in(a,a + \delta_1)$ and $x_2\in(b-\delta_2,b)$ such that $f(x_1)$ and $f(x_2)$ have opposite signs . Then, by the Intermediate Value Theorem, there must be a zero point of $f(x)$ in the interval $(x_1,x_2)\subseteq(a,b)$. >**Example**
>$$\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}$$By **Faà di Bruno's Formula**:  $$
\frac{\mathrm{d}^n}{\mathrm{d}x^n} f(g(x)) = \sum \frac{n!}{m_1! \, m_2! \, \cdots \, m_n!} \cdot f^{(m_1 + m_2 + \cdots + m_n)}(g(x)) \cdot \prod_{j=1}^n \left( \frac{g^{(j)}(x)}{j!} \right)^{m_j}
$$  where:  
The summation $\sum$ ranges over all sets of non - negative integers $m_1, m_2, \dots, m_n$ satisfying:  
$$1 \cdot m_1 + 2 \cdot m_2 + 3 \cdot m_3 + \cdots + n \cdot m_n = n$$  $$
\begin{align*}
\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}&=e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\sum_{\substack{1 \cdot m_1 + \cdots + (n-k) \cdot m_{n-k} = n-k}}\frac{(n-k)!}{m_1!\cdots m_{n-k}!}\prod_{j=1}^{n-k}\left[\frac{(-1)^j}{x^{j+1}}\right]^{m_j}\\
&\stackrel{M=m_1+\cdots +m_{n-k}}{=}e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\cdot (-1)^{n-k} \cdot \sum \frac{(n-k)!}{m_1! \cdots m_{n-k}!} \cdot x^{-((n-k) + M)}\\
&\stackrel{\text{唯一有效项为}k = 0}{=}x^{n-1} \cdot (-1)^n e^{\frac{1}{x}} \cdot x^{-2n} = \frac{(-1)^n}{x^{n+1}} e^{\frac{1}{x}}
\end{align*}
$$`Mathematical induction is easy`
http://www.lryc.cn/news/627161.html

相关文章:

  • C++/Qt开发:TCP通信连接软件测试方法:ECHO指令
  • PyTorch API 5
  • CorrectNav——基于VLM构建带“自我纠正飞轮”的VLN:通过「视觉输入和语言指令」预测导航动作,且从动作和感知层面生成自我修正数据
  • CoreShop微信小程序商城框架开启多租户-添加一个WPF客户端以便进行本地操作(5)
  • 当 AI 开始 “理解” 情绪:情感计算如何重塑人机交互的边界
  • 基于单片机环境火灾安全检测
  • NVIDIA Isaac Sim
  • 48 C++ STL模板库17-容器9-关联容器-映射(map)多重映射(multimap)
  • VR交通安全学习机-VR交通普法体验馆方案
  • 2026 济南淀粉深加工展览会亮点:玉米科技与未来产业发展
  • IPSEC安全基础
  • C++智能指针详解:告别内存泄漏,拥抱安全高效
  • 【科研绘图系列】R语言绘制平滑曲线折线图
  • AI重塑软件测试:质量保障的下一站
  • MySQL分库分表与MyCAT
  • PiscCode集成Hand Landmarker:实现高精度手部姿态检测与分析
  • C语言:第18天笔记
  • Google Chrome扩展不受信任 - 不受支持的清单版本 解决方案 -- Chrome扩展插件无法加载 扩展程序无法使用 解决方案
  • PiscCode使用MediaPipe Face Landmarker实现实时人脸特征点检测
  • vue3 el-select 默认选中第一个
  • 基础笔记8.20
  • 8.20网络编程——sqlite3数据库
  • lua入门以及在Redis中的应用
  • 技术干货|使用Prometheus+Grafana监控redis实例详解
  • 自学嵌入式第二十三天:数据结构(3)-双链表
  • Java 性能优化实战(二):JVM 调优的 5 个核心维度
  • c#入门笔记(3)
  • Netty HashedWheelTimer设计原理:从时间轮算法到源码实现
  • 基于SpringBoot的蜗牛兼职网平台
  • RabbitMQ 基础