当前位置: 首页 > news >正文

Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs

Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs

Rakshit Trivedi 1 Hanjun Dai 1 Yichen Wang 1 Le Song 1

知识背景

Temporal Knowledge Graph : facts occur,recur or evolve over time in these graphs,and each edge in the graphs have temporal information associated with it
knowledge evolution : evolve entities and their dynamically changing relationships over time

存在的问题

static graph 缺点:lack ability to use rich temporal dynamics available in underlying data represented by temporal knowledge graphs

论文提出方法

Know-Evolve
主要做法:the occurrence of a fact(edge) is modeled as a multivariate point process whose intensity function is modulated by th score for that fact computed based on the learned entity embeddings

论文主要贡献

1.propose a novel deep learning architecture : evolve over time based on availability of new facts
2.ability to predict time when the fact may potentially occur(⭐比其他论文的优点)
3.support Open World Assumption as missing links are not considered to be false and may potentially occur in time + support prediction over unseen entities due to its novel dynamic embedding process(⭐没发生的事件不能说是错误的)
4.temporal point process framework(⭐⭐⭐论文重要方法)

预备知识

预备知识1-Temporal Point Process

1.random process
2.consist of a list of events localized in time
在这里插入图片描述
3.temporal point process = counting process N(t) : the number of events before time t
4.在这里插入图片描述
typically assume that only one event can happen in a small window of size dt
dN(t) ∈ {0,1}
5.在这里插入图片描述
6.在这里插入图片描述

预备知识2-Temporal Knowledge Graph representation

1.在这里插入图片描述
2.在这里插入图片描述

Evolutionary Knowledge Network

1.Temporal Process

在这里插入图片描述
在这里插入图片描述
this modulates the intensity of current event based on most recent activity on either entities’ timeline and allows to capture scenarios like non-periodic events and previously unseen events

2.Relational Score Function

在这里插入图片描述在这里插入图片描述

3.Dynamically Evolving Entity Representations

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Understanding Unified View of Know-Evolve

在这里插入图片描述
在这里插入图片描述

实验

实验数据集

1.Global Database of Events, Language,and Tone (GDELT)
2.Integrated Crisis Early Warning System (ICEWS)

对比方法

there are no existing relational learning approaches that can predict time for a new fact
->hence we devised two baseline methods for evaluation time prediction performance
1.Multi-dimensional Hawkes process (MHP)
具体方法:an entity pair constitues a dimension and for each pair we collect sequence of events on its dimension and train and test on that sequence.
relationship is not modeled in this setup
2.Recurrent Temporal Point Process (RTPP)
具体方法:we concatenate static entity and relationship embeddings and augmented the resulting vector with temporal feature.This agumented unit is uaed as input to global RNN which produces output vector ht.During test time,for a given triplet,we use this vector ht to compute conditional intensity of the event given history which is further used to predict next event time.
主要用于time prediction

实验结果

link prediction

在这里插入图片描述
可以看出Know-Evolve比其他方法都有效

time prediction

在这里插入图片描述

总结思考

1.论文相较于之前的方法,提出图谱是动态进化的,是时序的
2.在加入时间的概念之后,不仅可以link prediction 还可以 time prediction(预测事件再次发生的时间)
3.文章中提到的new fact 我认为指的是实体库中subject 和 object 重新组合的结果,并没有生成一个entity,是图谱的更新存储的问题
比如 (小王,课代表,初一二班,2001) new fact 指(小王,班长,初一二班,2002)
而不会指(小李,班长,初一二班,2002)当小李不在实体库中

http://www.lryc.cn/news/62705.html

相关文章:

  • 电脑高效率工作、学习工具软件推荐
  • Java8新特性函数式编程 - Lambda、Stream流、Optional
  • AutoGPT安装教程
  • 轻量级服务器nginx:负载均衡
  • 陶渊明最有名的10首诗,闲适美好
  • 最好用的六款虚拟机软件,赶紧收藏
  • LSSANet:一种用于肺结节检测的长、短切片感知网络
  • LVS负载均衡群集部署—NAT
  • 【Access】win 10 / win 11:Access 下载、安装、使用教程(「管理信息系统」实践专用软件)
  • 波奇学Linux:Linux的认识和云服务器使用
  • JMeter 获取登录接口的token
  • 算法训练day4:栈与队列
  • Git cherry-pick详解
  • 基于JS简单甘特图(IT枫斗者)
  • 你真的会判断对象是否为空吗?
  • JVM系列(十) 垃圾收集器之 Parallel Scavenge/Old
  • 华为认证实验篇-ENSP的安装(附下载地址)
  • 轻量级任务看板做任务管理
  • ARM buildroot 的引入
  • Fancy 的区间(C++)(前缀和差分)
  • 06 【Sass语法介绍-函数】
  • 入参校验产品化 schema
  • 【Linux】7、一篇文章学习 Linux 中一些硬核的常用知识
  • gpt4-如何使用
  • 定时每天凌晨一点在linux系统上执行一个autobuild.sh脚本如何实现?
  • C++ 设计模式23:访问者模式
  • 使用python实现葡萄酒威士忌风味特征分类
  • 代理IP(代理服务器)的作用和注意事项
  • 问题解决 | Failed to initialize NVML: Driver/library version mismatch
  • ThinkPHP模型操作上