当前位置: 首页 > news >正文

OpenCV中对图像进行平滑处理的4种方式

OpenCV 提供了多种图像平滑(模糊)处理方法,用于减少图像噪声、平滑细节,常见的有以下四种:

一、均值滤波(Mean Blurring)

原理:用像素周围 n×n 邻域内所有像素的平均值替代该像素值。

特点:简单快速,但可能导致图像边缘模糊。

函数cv2.blur(src, ksize)

参数:src:输入图像

ksize:卷积核大小(如 (3,3)(5,5)

代码实现:

import cv2
import numpy as np
# 对图片进行噪声处理
def add_peppersalt_noise(image,n=10000):result = image.copy()h,w= image.shape[:2]        # 获取图片的高和宽for i in range(n):          # 生成n个椒盐噪声x=np.random.randint(1,h)y=np.random.randint(1,w)if np.random.randint(0,2) == 0:result[x,y]=0else:result[x,y]= 255return result
#导入图片
image =cv2.imread('2197.jpg')
image = cv2.resize(image,dsize=None,fx=0.2,fy=0.2)# 对图片进行缩放
cv2.imshow('yuantu',image) # 原图
cv2.waitKey(0)
noise = add_peppersalt_noise(image) # 噪声处理后的图片
cv2.imshow('noise',noise)
cv2.waitKey(0)
# 均值滤波 blur
blur_1 = cv2.blur(noise,(3,3))  # 均值处理后的图片
cv2.imshow('blur_1',blur_1)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:

二、方框滤波 boxFilter

原理:方框滤波通过一个固定大小的矩形(方框)卷积核对图像进行卷积操作:

归一化方框滤波:计算方框内所有像素的平均值,替代中心像素值(效果与均值滤波完全一致)。

非归一化方框滤波:计算方框内所有像素的总和(不除以方框面积),可能导致像素值溢出(需注意数据类型)

特点:计算简单快速,适合对实时性要求高的场景

函数:cv2.boxFilter(src, ksize,ddepth,normalize)

参数:src:输入图像(必须是单通道或多通道的 numpy 数组)。

ddepth:输出图像的深度(数据类型),通常设为 -1 表示与输入图像深度相同。

ksize:卷积核大小(如 (3,3)(5,5)),必须是正奇数。

normalize:是否归一化(布尔值):

normalize=True(默认):归一化,等价于均值滤波(结果 = 像素和 / 方框面积)。normalize=False:非归一化,结果 = 像素总和(可能超过像素值范围,需后续处理)。

代码实现:

import cv2
import numpy as np
# 对图片进行噪声处理
def add_peppersalt_noise(image,n=10000):result = image.copy()h,w= image.shape[:2]        # 获取图片的高和宽for i in range(n):          # 生成n个椒盐噪声x=np.random.randint(1,h)y=np.random.randint(1,w)if np.random.randint(0,2) == 0:result[x,y]=0else:result[x,y]= 255return result
#导入图片
image =cv2.imread('2197.jpg')
image = cv2.resize(image,dsize=None,fx=0.2,fy=0.2)
cv2.imshow('yuantu',image)
cv2.waitKey(0)
noise = add_peppersalt_noise(image)
cv2.imshow('noise',noise)
cv2.waitKey(0)
# 方框滤波  boxFilter
boxFilter_1 =cv2.boxFilter(noise,-1,(3,3),normalize = True)
cv2.imshow('boxFilter_1',boxFilter_1)
cv2.waitKey(0)
boxFilter_2 = cv2.boxFilter(noise,-1,(3,3),normalize = False)
cv2.imshow('boxFilter_2',boxFilter_2)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:

三、高斯滤波(Gaussian Blurring)

原理:用高斯函数生成的权重矩阵(中心像素权重更高,边缘像素权重更低)对邻域像素加权平均。

特点:比均值滤波更保留图像细节,对高斯噪声(如相机传感器噪声)效果好。

函数cv2.GaussianBlur(src, ksize, sigmaX,sigmaY)

参数:src:输入图像,通常是一个NumPy数组。 ksize:滤波器的大小,它是一个元组,表示在水平和垂直方向上的像素数量。例如。(5,5)表示一个5x5的滤波器。

siqmaX和siqmaY:分别表示在X轴和Y轴方向上的标准差。这些值与滤波器大小相同。默认持况下、它们都等于0,这意味着没有高斯模糊。

dst:输出图像,通常是一个NumPy数组。如果为None,则会创建一个新的数组来存储结果

代码实现:

import cv2
import numpy as np
def add_peppersalt_noise(image,n=10000):result = image.copy()h,w= image.shape[:2]        # 获取图片的高和宽for i in range(n):          # 生成n个椒盐噪声x=np.random.randint(1,h)y=np.random.randint(1,w)if np.random.randint(0,2) == 0:result[x,y]=0else:result[x,y]= 255return result
# 导入图片
image =cv2.imread('2197.jpg')
image = cv2.resize(image,dsize=None,fx=0.2,fy=0.2)
cv2.imshow('yuantu',image)
cv2.waitKey(0)
noise = add_peppersalt_noise(image)
cv2.imshow('noise',noise)
cv2.waitKey(0)
#  高斯滤波 GaussianBlur
GaussianB = cv2.GaussianBlur(noise,(3,3),1)
cv2.imshow('GaussianBlur',GaussianB)
cv2.waitKey(0)

结果:

四、中值滤波(Median Blurring)

原理:用像素周围 n×n 邻域内所有像素的中值替代该像素值。

特点:对椒盐噪声(图像中的黑白斑点)效果极佳,能有效保留边缘。

函数cv2.medianBlur(src, ksize,dst)

参数:src:输入图像。

ksize:滤波器的大小,它是一个整数,表示在水平和垂直方向上的像素数量。例如、5表示一个5x5的滤波器。

dst:输出图像,通常是一个NumPy数组。如果为None,则会创建一个新的数组来存储结果。

代码实现:

import cv2
import numpy as np
def add_peppersalt_noise(image,n=10000):result = image.copy()h,w= image.shape[:2]        # 获取图片的高和宽for i in range(n):          # 生成n个椒盐噪声x=np.random.randint(1,h)y=np.random.randint(1,w)if np.random.randint(0,2) == 0:result[x,y]=0else:result[x,y]= 255return result
# 导入图片
image =cv2.imread('2197.jpg')
image = cv2.resize(image,dsize=None,fx=0.2,fy=0.2)
cv2.imshow('yuantu',image)
cv2.waitKey(0)
noise = add_peppersalt_noise(image)
cv2.imshow('noise',noise)
cv2.waitKey(0)
# 中值滤波 medianBlur
medianB =cv2.medianBlur(noise,3)
cv2.imshow('medianBlur',medianB)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:

总结

由四种滤波方式得到的结果可以看到对于去除椒盐噪声优先使用中值滤波

http://www.lryc.cn/news/620693.html

相关文章:

  • HarmonyOS AI辅助编程工具(CodeGenie)智慧调优
  • 力扣(LeetCode) ——225 用队列实现栈(C语言)
  • 信息vs知识:人类学习与AI规则提取
  • 异步编程的 8 种实现方式:疑难点与注意事项解析
  • 《疯狂Java讲义(第3版)》学习笔记ch4
  • 安全加固4(K8S最小化微服务安全)
  • C++ 中的元控制流与概念化类型擦除
  • Elasticsearch 中如何配置 RBAC 权限-实现安全的访问控制
  • 论郑和下西洋元素融入课件编辑器的意义与影响​
  • 智能门锁:安全与便捷的现代家居入口
  • UE小:编辑器模式下「窗口/鼠标不在焦点」时仍保持高帧率
  • UE5配置MRQ编解码器输出MP4视频
  • Mybatis学习笔记(三)
  • PostgreSQL 免安装
  • AXI GPIO 2——ZYNQ学习笔记
  • 相较于传统AR作战环境虚拟仿真系统,其优势体现在哪些方面?
  • Mysql基本使用语句(一)
  • 生成和发布博客的工作流
  • 力扣(串联所有单词的子串)
  • ChatECNU 边缘 AI 智能体对话
  • 在线进销存系统高效管理网站源码搭建可二开
  • 倾斜按钮(径向渐变详细介绍)
  • MCU中的LTDC(LCD-TFT Display Controller)
  • 项目日志框架与jar中日志框架冲突 解决
  • 20. 了解过尾递归优化吗
  • 1780. 判断一个数字是否可以表示成三的幂的和
  • 大模型工程化落地:从模型选择到性能优化的实战指南
  • Gradle使用场景
  • k8s+isulad 重装
  • 在语音通信业务量下降时候该怎么做