当前位置: 首页 > news >正文

多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测

多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测

目录

    • 多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

1
2
3
4
5
6
7
8

9
10
11
12

基本介绍

MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测。基于贝叶斯(bayes)优化卷积神经网络-长短期记忆网络(CNN-LSTM)多变量时间序列预测,BO-CNN-LSTM/Bayes-CNN-LSTM多变量时间序列预测模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
3.运行环境matlab2020b及以上。
4.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测,MainBO_CNN_LSTMNTS.m是主程序,其余为函数文件,无需运行;

模型搭建

  • CNN-LSTM模型结合了CNN和LSTM的优点,CNN-LSTM网络模型如图1所示,本文使用的CNN-LSTM模型的第一部分是由卷积层和最大值组成的CNN部分池化层,对原始数据进行预处理并输入CNN卷积层,利用卷积核自适应提取生命特征,卷积层将遍历输入信息,将卷积核权重与局部序列进行卷积运算体管信息得到初步的特征矩阵,比原始序列数据(矩阵)更具表现力。
  • 本文使用的池化层是最大池化层,池化操作对提取的特征进行数据降维,避免模型过拟合,保留主要特征。最大池化层将前一个卷积层得到的特征矩阵作为输入,在这个矩阵上滑动一个池化窗口,在每一次滑动中取池化窗口的最大值,输出一个更具表现力的特征矩阵。
  • 池化后,连接一个 LSTM 层,提取相关向量由CNN构造成一个长期的时间序列作为LSTM的输入数据。卷积层将卷积层的数据展平(Flatten),模型中加入Flatten,将(height,width,channel)的数据压缩成一个长高宽通道的一维数组,然后我们可以添加直接密集层。
  • 对卷积池化数据压缩特征操作,多个卷积特征提取框架提取的特征融合或从输出层融合,全连接层聚合学习到的特征,激活函数使用Relu。
  • 通常,在模型训练过程中需要对超参数进行优化,为模型选择一组最优的超参数,以提高预测的性能和有效性。 凭经验设置超参数会使最终确定的模型超参数组合不一定是最优的,这会影响模型网络的拟合程度及其对测试数据的泛化能力。

8

  • 伪代码
    9

10

  • 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。

程序设计

  • 完整程序和数据获取方式1:私信博主,同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的所有程序,数据订阅后私信我获取):多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];%%  贝叶斯优化网络参数
bayesopt(fitness, optimVars, ...    % 优化函数,和参数范围'MaxTime', Inf, ...                      % 优化时间(不限制) 'IsObjectiveDeterministic', false, ...'MaxObjectiveEvaluations', 10, ...       % 最大迭代次数'Verbose', 1, ...                        % 显示优化过程'UseParallel', false);%%  得到最优参数
NumOfUnits       = BayesObject.XAtMinEstimatedObjective.NumOfUnits;       % 最佳隐藏层节点数
InitialLearnRate = BayesObject.XAtMinEstimatedObjective.InitialLearnRate; % 最佳初始学习率
L2Regularization = BayesObject.XAtMinEstimatedObjective.L2Regularization; % 最佳L2正则化系数
%% 创建混合CNN-LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"CNN-LSTM"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% CNN特征提取convolution2dLayer([FiltZise 1],32,'Padding','same','WeightsInitializer','he','Name','conv','DilationFactor',1);batchNormalizationLayer('Name','bn')eluLayer('Name','elu')averagePooling2dLayer(1,'Stride',FiltZise,'Name','pool1')% 展开层sequenceUnfoldingLayer('Name','unfold')% 平滑层flattenLayer('Name','flatten')% LSTM特征学习lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% LSTM输出lstmLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% CNNLSTM训练选项
% 批处理样本
% 最大迭代次数
%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.lryc.cn/news/62064.html

相关文章:

  • Shell知识点(一)
  • mysql 索引失效、联合索引失效场景和举例
  • 快速将PDF转换为图片:使用在线转换器的步骤
  • 什么是gpt一4-如何用上gpt-4
  • Docker 相关概念
  • STM32平衡小车 TB6612电机驱动学习
  • 动态加载 JS 文件
  • 14、lldb调试指令
  • 浏览器缓存策略:强缓存和协商缓存
  • 2023年Chat GPT 应用前景分析
  • 并发计算公式
  • “华为杯”研究生数学建模竞赛2020年-【华为杯】E题:能见度估计与预测(附获奖论文及python代码实现)
  • Arduino学习笔记3
  • BPMN2.0 任务-用户任务
  • David Silver Reinforcement Learning -- Markov process
  • 项目结束倒数2
  • VBA智慧办公9——图例控件教程
  • Presto VS Spark
  • 为什么我们能判断声音的远近
  • 那些关于DIP器件不得不说的坑
  • 论文笔记:基于U-Net深度学习网络的地震数据断层检测
  • kafka单节点快速搭建
  • 【MySQL】(6)常用函数
  • Linux学习 Day1
  • Hibernate中的一对多和多对多关系
  • Linux系统之部署Samba服务
  • 回顾产业互联网的发展历程,技术的支撑是必不可少的
  • 关于gas费优化问题
  • Linux——中断和时间管理(中)
  • 嵌入式软件中常见的 8 种数据结构详解