当前位置: 首页 > news >正文

Flink DataStream 按分钟或日期统计数据量

一、环境版本

环境版本
Flink1.17.0
Kafka2.12
MySQL5.7.33

二、MySQL建表脚本

create table user_log
(id      int auto_increment comment '主键'primary key,uid     int    not null comment '用户id',event   int    not null comment '用户行为',logtime bigint null comment '日志时间'
)comment '用户日志表,作为验证数据源';

三、用户日志类

新建maven项目

用以定义Kafka和MySQL中Schema

/*** 用户日志类*/
@Data
public class UserLog {//用户uidprivate int uid;//用户行为private int event;//日志时间private Date logtime;//获取日期,用于按日期统计数据public String getFormatDate() {return DateUtil.format(logtime, "yyyyMMdd");}//获取时间,精确到分钟public String getFormatTime() {return DateUtil.format(logtime, "yyyy-MM-dd HH:mm") + ":00";}
}
}

四、用户数据生成器

/*** 用户数据生成器*/
public class UserLogGenerator {public static void main(String[] args) throws Exception {// 1.获取执行环境StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);// 2.自定义数据生成器SourceDataGeneratorSource<UserLog> dataGeneratorSource = new DataGeneratorSource<>(// 指定GeneratorFunction 实现类new GeneratorFunction<Long, UserLog>(){// 定义随机数数据生成器public RandomDataGenerator generator;@Overridepublic void open(SourceReaderContext readerContext) throws Exception {generator = new RandomDataGenerator();}@Overridepublic UserLog map(Long aLong) throws Exception {UserLog userLog = new UserLog();//随机生成用户uiduserLog.setUid(generator.nextInt(1, 50));//随机生成用户行为userLog.setEvent(generator.nextInt(1, 2));//随机生成用户数据时间userLog.setLogtime(DateUtil.offset(new DateTime(), DateField.MILLISECOND, generator.nextInt(-2000, 2000)));return userLog;}},// 指定输出数据的总行数
//                60 * 60 * 10,120,// 指定每秒发射的记录数RateLimiterStrategy.perSecond(10),// 指定返回值类型, 将Java的StockPrice封装成到TypeInformationTypeInformation.of(UserLog.class));DataStreamSource<UserLog> dataGeneratorSourceStream = env.fromSource(dataGeneratorSource, WatermarkStrategy.noWatermarks(), "dataGeneratorSource");//输出生成数据
//        dataGeneratorSourceStream.print();//kafka数据写入KafkaSink<UserLog> kafkaSink = KafkaSink.<UserLog>builder().setBootstrapServers("hadoop01:9092").setRecordSerializer(KafkaRecordSerializationSchema.<UserLog>builder().setTopic("userLog").setValueSerializationSchema((SerializationSchema<UserLog>) userLog -> JSONUtil.toJsonStr(userLog).getBytes()).build()).build();dataGeneratorSourceStream.sinkTo(kafkaSink);//MySQL数据写入,用以数据验证SinkFunction<UserLog> jdbcSink = JdbcSink.sink("insert into user_log (uid, event, logtime) values (?, ?, ?)",new JdbcStatementBuilder<UserLog>() {@Overridepublic void accept(PreparedStatement preparedStatement, UserLog userLog) throws SQLException {preparedStatement.setInt(1, userLog.getUid());preparedStatement.setInt(2, userLog.getEvent());preparedStatement.setLong(3, userLog.getLogtime().getTime());}},JdbcExecutionOptions.builder().withBatchSize(1000).withBatchIntervalMs(200).withMaxRetries(5).build(),new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withUrl("jdbc:mysql://192.168.31.116:3306/demo").withDriverName("com.mysql.cj.jdbc.Driver").withUsername("root").withPassword("root").build());dataGeneratorSourceStream.addSink(jdbcSink);env.execute();}
}

五、DataStream按分钟或日期统计PV和UV

/*** 计算PV和UV*/
public class UserLogPVUVCount {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);KafkaSource<String> kafkaSource = KafkaSource.<String>builder().setBootstrapServers("hadoop01:9092").setTopics("userLog").setValueOnlyDeserializer(new SimpleStringSchema()).setStartingOffsets(OffsetsInitializer.earliest()).build();DataStreamSource<String> kafkaSourceStream = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "kafkasource");
//        kafkaSourceStream.print();//kafka数据反序列化SingleOutputStreamOperator<UserLog> userLogStream = kafkaSourceStream.map(s -> JSONUtil.toBean(s, UserLog.class));//计算pv和uv,按日期统计时需将getFormatTime改为getFormatDate,并且注释‘一分钟为窗口’代码和反注释‘一天为窗口’代码SingleOutputStreamOperator<Tuple3<String, String, Integer>> userPVUVStream =userLogStream.keyBy((KeySelector<UserLog, String>) UserLog::getFormatTime)// 一天为窗口,指定时间起点比时间戳时间早8个小时
//                .window(TumblingProcessingTimeWindows.of(Time.days(1), Time.hours(-8)))// 一分钟为窗口.window(TumblingProcessingTimeWindows.of(Time.minutes(1)))// 10s触发一次计算,更新统计结果.trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(10)))// 剔除超过时间范围的数据.evictor(TimeEvictor.of(Time.seconds(0),true))// 计算pv uv.process(new MyProcessWindowFunction());userPVUVStream.print();env.execute();}
}
/*** 自定义窗口处理函数,计算PV和UV*/
public class MyProcessWindowFunction extends ProcessWindowFunction<UserLog, Tuple3<String, String, Integer>, String, TimeWindow> {// UVprivate transient MapState<Integer, String> uvState;// PVprivate transient ValueState<Integer> pvState;@Overridepublic void open(Configuration parameters) throws Exception {super.open(parameters);uvState = this.getRuntimeContext().getMapState(new MapStateDescriptor<>("uv", Integer.class, String.class));pvState = this.getRuntimeContext().getState(new ValueStateDescriptor<>("pv", Integer.class));//ttl过期机制StateTtlConfig ttlConfig = StateTtlConfig//1分钟过期.newBuilder(Time.minutes(1)).setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite).setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired).build();// 开启ttlValueStateDescriptor<Integer> pvStateDescriptor = new ValueStateDescriptor<>("pv", Integer.class);MapStateDescriptor<Integer, String> uvStateDescriptor = new MapStateDescriptor<>("uv", Integer.class, String.class);pvStateDescriptor.enableTimeToLive(ttlConfig);uvStateDescriptor.enableTimeToLive(ttlConfig);pvState = this.getRuntimeContext().getState(pvStateDescriptor);uvState = this.getRuntimeContext().getMapState(uvStateDescriptor);}@Overridepublic void process(String s, ProcessWindowFunction<UserLog, Tuple3<String, String, Integer>, String, TimeWindow>.Context context, Iterable<UserLog> iterable, Collector<Tuple3<String, String, Integer>> collector) throws Exception {Integer pv = 0;Iterator<UserLog> iterator = iterable.iterator();while (iterator.hasNext()){pv = pv + 1;Integer userId = iterator.next().getUid();uvState.put(userId,null);}pvState.update((pvState.value() == null ? 0 : pvState.value()) + pv);int uv = 0;Iterator<Integer> uvIterator = uvState.keys().iterator();while (uvIterator.hasNext()){uvIterator.next();uv = uv + 1;}collector.collect(Tuple3.of(s, "uv", uv));collector.collect(Tuple3.of(s, "pv", pvState.value()));}
}

六、数据验证

  1. 启动 UserLogGenerator
  2. 启动 UserLogCount
(2025-08-13 10:37:00,uv,45)
(2025-08-13 10:37:00,pv,118)
(2025-08-13 10:36:00,uv,2)
(2025-08-13 10:36:00,pv,2)
  1. 在MySQL中验证查询

转换时间戳

时间戳转换前转换后
w_start2025-08-13 10:36:001755052560000
w_end2025-08-13 10:37:001755052620000
# 与Flink输出一致
select count(distinct uid) from user_log where logtime< 1755052620000 and logtime>=1755052560000;select count(distinct uid) from user_log where logtime>= 1755052620000 ;

七、POM文件

<project><groupId>dblab</groupId><artifactId>demo</artifactId><modelVersion>4.0.0</modelVersion><name> </name><packaging>jar</packaging><version>1.0</version><repositories><repository><id>central-repos</id><name>Central Repository</name><url>http://repo.maven.apache.org/maven2</url></repository><repository><id>alimaven</id><name>aliyun maven</name><url>https://maven.aliyun.com/nexus/content/groups/public/</url></repository></repositories><properties><flink.version>1.17.0</flink.version></properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version></dependency>
<!--    <dependency>-->
<!--      <groupId>org.apache.flink</groupId>-->
<!--      <artifactId>flink-connector-files</artifactId>-->
<!--      <version>${flink.version}</version>-->
<!--    </dependency>--><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-datagen</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner-loader</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-runtime</artifactId><version>${flink.version}</version></dependency>
<!--    <dependency>-->
<!--      <groupId>org.apache.flink</groupId>-->
<!--      <artifactId>flink-connector-files</artifactId>-->
<!--      <version>${flink.version}</version>-->
<!--    </dependency>--><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version></dependency>
<!--    <dependency>-->
<!--      <groupId>org.apache.flink</groupId>-->
<!--      <artifactId>flink-csv</artifactId>-->
<!--      <version>${flink.version}</version>-->
<!--    </dependency>--><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>3.1.1-1.17</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.33</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-json</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.26</version><scope>provided</scope></dependency><dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.39</version></dependency></dependencies><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-assembly-plugin</artifactId><version>3.0.0</version><configuration><descriptorRefs><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs></configuration><executions><execution><id>make-assembly</id><phase>package</phase><goals><goal>single</goal></goals></execution></executions></plugin></plugins></build>
</project>

八、参考鸣谢

轻松通关Flink第33讲:Flink 计算 PV、UV 代码实现

Flink计算pv和uv的通用方法

http://www.lryc.cn/news/619281.html

相关文章:

  • 深度学习——03 神经网络(3)-网络优化方法
  • 基于Apache Flink的实时数据处理架构设计与高可用性实战经验分享
  • 搜索引擎核心机制解析
  • 美团搜索推荐统一Agent之性能优化与系统集成
  • 云计算-OpenStack 实战运维:从组件配置到故障排查(含 RAID、模板、存储管理,网络、存储、镜像、容器等)
  • Flink中的窗口
  • HTML5 Canvas实现数组时钟代码,适用于wordpress侧边栏显示
  • 方法论基础。
  • 设计秒杀系统从哪些方面考虑
  • 从零开始:用PyTorch实现线性回归模型
  • 比特币与区块链:去中心化的技术革命
  • VUE2连接USB打印机
  • Pytorch FSDP权重分片保存与合并
  • 【C语言强化训练16天】--从基础到进阶的蜕变之旅:Day3
  • 【Qt开发】常用控件(三) -> geometry
  • 疏老师-python训练营-Day44预训练模型
  • php7 太空船运算符
  • Linux 软件编程:文件IO、目录IO、时间函数
  • 适配安卓15(对应的sdk是35)
  • RxJava 在 Android 中的深入解析:使用、原理与最佳实践
  • 大牌点餐接口api对接全流程
  • 《吃透 C++ 类和对象(中):构造函数与析构函数的核心逻辑》
  • Ubuntu22.04轻松安装Qt与OpenCV库
  • 药房智能盘库系统的Python编程分析与实现—基于计算机视觉与时间序列预测的智能库存管理方案
  • 基于大数据spark的医用消耗选品采集数据可视化分析系统【Hadoop、spark、python】
  • 分段锁和限流的间接实现
  • 通信中间件 Fast DDS(一) :编译、安装和测试
  • 机器学习—— TF-IDF文本特征提取评估权重 + Jieba 库进行分词(以《红楼梦》为例)
  • CMake进阶: 使用FetchContent方法基于gTest的C++单元测试
  • LINUX812 shell脚本:if else,for 判断素数,创建用户