当前位置: 首页 > news >正文

C++算法恢复训练之快速排序

快速排序(Quick Sort)是一种基于分治思想的排序算法,它通过将待排序数组分成两个子数组,其中一个子数组的所有元素都比另一个子数组的元素小,然后对这两个子数组递归地进行排序,最终将整个数组排序。快速排序是一种原地排序算法,其时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

下面是使用 C++ 实现的 经典 快速排序算法:

#include <vector>
#include <iostream>
using namespace std;int partitionSimple(vector<int>& array, int left, int right)
{if (left >= right){return -1;}// Use the value of index `right` as the pivotconst int pivot = array[right];int lessBound = left - 1;for (int i = left; i < right; i++){// If the current element is not more than then pivot value,// then swap it with the less part's next value, and make the less part add 1if (array[i] <= pivot){swap(array[i], array[++lessBound]);}}// At last, swap the pivot with the next element of less partswap(array[lessBound + 1], array[right]);return lessBound + 1;
}void quickSortSimple(vector<int>& array, int left, int right)
{if (left >= right){return;}const int pivotIndex = partitionSimple(array, left, right);quickSortSimple(array, left, pivotIndex - 1);quickSortSimple(array, pivotIndex + 1, right);
}void quickSort(vector<int>& array)
{quickSortSimple(array, 0, array.size() - 1);
}

经典快速排序的实现过程可以分为两个步骤:

  • 分割子问题:选取一个元素作为基准值(pivot),将待排序数组分成两个子数组,一个子数组中的元素都小于等于基准值,另一个子数组中的元素都大于等于基准值。
  • 合并解决方案:对两个子数组分别进行快速排序(递归),最后将两个已排序的子数组合并成一个有序数组。

递归的部分其实比较好理解和实现,那么现在可以将问题简化为:给定一个数组,和一个基准值,如何将小于等于基准值的元素放在数组左边,将大于基准值的元素放在数组右边?

我的实现思路是利用一个小于等于pivot值的边界的索引这样一个概念变量,对应代码中的lessBound,它对应的元素及其左边部分都小于等于pivot值。在随后的数组遍历过程中,如果遍历的元素满足这样的条件,则将该元素与lessbound的后一位对调,然后将lessbound的范围扩大一位。核心思路类似快慢指针:即lessbound扮演的是慢指针,i扮演的是快指针。

最后,数组已经被分成了两个子数组,其中一个子数组中的元素都小于等于基准值,另一个子数组中的元素都大于基准值。然后分别对这两个子数组进行递归。

快速排序的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),其中 n n n 是待排序数组的长度。快速排序每次将待排序数组分成两个子数组,其中一个子数组中的元素都小于等于基准值,另一个子数组中的元素都大于等于基准值。

由于快速排序每次都将待排序数组分成两个子数组,因此递归树的高度为 l o g n logn logn。每个节点所处理的子问题的规模最大为 n n n,因此快速排序的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

需要注意的是,在最坏情况下,快速排序的时间复杂度为 O ( n 2 ) O(n^2) O(n2),此时待排序数组已经有序或者接近有序,且每次选取的基准值都是数组中的最小或最大元素。为了避免最坏情况的发生,可以采用以下优化措施:

  • 随机选取基准值。
  • 三数取中法(Median-of-three partitioning):从子数组的左端、右端和中间位置分别选取一个元素,选择它们的中间值作为基准值。

除此以外,从算法本身出发,经典快排是利用某个值作为基准值,其算法实质在于一个周期内确定这个pivot的下标索引。从这点考虑,可以考虑在这个周期内将所有与pivot相等的值的位置都敲定,在递归时就不考虑这一批数。

C++相应的实现:


vector<int> partitionOptimized(vector<int>& array, int left, int right)
{if (left >= right){return {-1, -1};}int pivot = array[right];int lessBound = left - 1, moreBound = right;int i = left;while (i < moreBound){if (array[i] == pivot){i++;}else if (array[i] < pivot){swap(array[++lessBound], array[i++]);}else{// array[i] > pivotswap(array[--moreBound], array[i]);}}swap(array[right], array[moreBound++]);return {lessBound, moreBound};
}void quickSortOptimized(vector<int>& array, int left, int right)
{if (left >= right){return;}vector<int> bounds = partitionOptimized(array, left, right);quickSortOptimized(array, left, bounds[0]);quickSortOptimized(array, bounds[1], right);
}void quickSort(vector<int>& array)
{quickSortOptimized(array, 0, array.size() - 1);
}

新的算法的最显著的不同之处在于,partition的返回值是一个数组,保存了小于pivot的边界和大于pivot的边界,他们也是新一轮递归的依据。在计算这两个边界时(partition内),需要将一个数组拆分为:小于pivot的部分,等于pivot的部分,以及大于pivot的部分。此时主要是利用三个指针,分别指向小于pivot的部分的边界,大于pivot的部分的边界,以及当前遍历元素。如果当前元素小于pivot,则与之前的思路类似,将当前元素与小于边界的下一位调换,小于的边界扩大一位,继续下一个元素遍历;如果当前元素等于pivot,继续下一个元素遍历,其他不变;如果当前元素大于pivot,则需要将当前元素与大于边界的下一位进行调换,大于的边界减小一位,注意此时仍然需要调查被调换元素的大小,即不继续一个元素的遍历。

当然,虽说是优化,但是这个思路也仅仅是在数组中有重复元素时会比经典快排稍微快一些,本质上算法复杂度并没有发生改变,也没有改变快排依赖数组状况的问题。

利用随机取基准值的方法确实可以令这个问题得到改善,但是取随机数本身也是需要一定的指令,其产生的消耗也是一个需要考虑和权衡的问题。

http://www.lryc.cn/news/60177.html

相关文章:

  • 事务的特性
  • Python 计算三角形的面积、Python 阶乘实例
  • C++入门教程||C++ 重载运算符和重载函数||C++ 多态
  • docker+docker-compose+nginx前后端分离项目部署
  • 基于PCA与LDA的数据降维实践
  • 【Hello Network】网络编程套接字(一)
  • 【计算机网络】学习笔记:第二章 物理层(五千字详细配图)【王道考研】
  • 直流有刷电机的电路分析
  • 使用PowerShell自动部署ASP.NetCore程序到IIS
  • Elasticsearch:保留字段名称
  • Qt 套接字类(QTcpSocket和QUdpSocket)解密:迈向 Qt 网络编程之巅
  • Python视频编辑库:MoviePy
  • 课程3:ASP.NET Core 身份验证 - Cookie
  • Visual Studio 2022如何安装和使用MSDN
  • 82.qt qml-2D粒子系统、粒子方向、粒子项(一)
  • 引用的底层原理(汇编指令),引用与指针的联系与区别
  • 磁盘的移臂调度算法
  • 软考第六章 网络互连与互联网
  • C6678-缓存和内存
  • 实操| 前端新人无敲代码开发APP
  • OpenCV图像处理之傅里叶变换
  • Docker网络案例
  • Java实验课的学习笔记(二)类的简单使用
  • 实战案例|聚焦攻击面管理,腾讯安全威胁情报守护头部券商资产安全
  • c++算法初级8——递推
  • Java后端面试题 重难点和被问到没答上来的点(包括java基础、关系型数据库、Redis、计算机网络、Spring、Java多线程、vue等)
  • 易观千帆 | 2023年3月银行APP月活跃用户规模盘点
  • [Android+JetPack] (Java实现) Retrofit2+RxJava3+Paging3+RecyclerView 实现加载网络数据例子 记录
  • Java 解析配置文件注入到配置类属性中供全局使用【开发记录】
  • 【Python开发手册】深入剖析Google Python开发规范:规范Python注释写作