当前位置: 首页 > news >正文

七、深度学习——RNN

一、RNN网络原理

  • 文本数据是具有序列特性的。为了表示出数据的序列关系,需要使用循环神经网络(Recurrent Nearal Networks,RNN)来对数据进行建模,RNN是一个作用于处理带有序列特点的样本数据

1.RNN的计算过程

  • h表示隐藏状态,每一次的输入都会包含两个值:上一个时间步的隐藏状态,当前状态的输入值,输出当前时间步的隐藏状态和当前时间步的预测结果

实际上,字是重复输入到同一个神经元中的

2.神经元内部的计算过程

ht=tanh(Wihxt+bih+Whhht−1+bhh)h_t= tanh(W_{ih}x_t+b_{ih}+W_{hh}h_{t-1}+b_{hh})ht=tanh(Wihxt+bih+Whhht1+bhh)

  • WihW_{ih}Wih表示输入数据的权重
  • bihb_{ih}bih表示输入数据的偏置
  • WhhW_{hh}Whh表示输入隐藏状态的权重
  • bhhb_{hh}bhh表示输入隐藏状态的偏置
  • 最后对输出结果使用tanh激活函数进行计算,得到该神经元的输出

3.API

RNN = torch.nn.RNN(input_size, hidden_size, num_layer)
  • input_size:输入数据的维度,一般设为词向量的维度
  • hidden_size:隐藏层h的维数,也是当前层神经元的输出维度
  • num_layer:隐藏层h的层数,默认为1

将RNN实例化就可以将数据送入进行处理,处理方式如下:

output, hn = RNN(x, h0)
  • 输入数据:输入主要包括词嵌入的x,初始的隐藏层h0

    • x的表示形式为[seq_len, batch, input_size],即[句子的长度,batch的大小,词向量的维度]
    • h0的表示形式为[num_layers, batch, hidden_size],即[隐藏层的层数, batch的大小,隐藏层h的维数](初始化设置为全0)
  • 输出结果:主要包括输出结果output,最后一层的hn

    • output的表示形式为[seq_len, batch, input_size],即[句子的长度,batch的大小,词向量的维度]
    • hn的表示形式为[num_layers, batch, hidden_size],即[隐藏层的层数, batch的大小,隐藏层h的维数]
http://www.lryc.cn/news/587615.html

相关文章:

  • C语言-流程控制
  • 详解从零开始实现循环神经网络(RNN)
  • 使用 keytool 在服务器上导入证书操作指南(SSL 证书验证错误处理)
  • kafka的部署
  • Android系统的问题分析笔记 - Android上的调试方式 bugreport
  • 论文阅读:WildGS-SLAM:Monocular Gaussian Splatting SLAM in Dynamic Environments
  • 深入浅出Kafka Consumer源码解析:设计哲学与实现艺术
  • Angular 框架下 AI 驱动的企业级大前端应用开
  • Kafka 时间轮深度解析:如何O(1)处理定时任务
  • 【Python】-实用技巧5- 如何使用Python处理文件和目录
  • 计算机网络通信的相关知识总结
  • 基于GA遗传优化的多边形拟合算法matlab仿真
  • vscode/cursor怎么自定义文字、行高、颜色
  • PHP password_hash() 函数
  • 仓储智能穿梭车:提升仓库效率50%的自动化核心设备
  • Ubuntu系统下Conda的详细安装教程与Python多版本管理指南
  • 【软件架构】软件体系结构风格实现
  • I2C设备寄存器读取调试方法
  • 卷绕/叠片工艺
  • React源码3:update、fiber.updateQueue对象数据结构和updateContainer()中enqueueUpdate()阶段
  • 新手向:Python自动化办公批量重命名与整理文件系统
  • 理解:进程、线程、协程
  • LLM表征工程还有哪些值得做的地方
  • python的小学课外综合管理系统
  • 我对muduo的梳理以及AI的更改
  • MFC UI表格制作从专家到入门
  • LeetCode经典题解:206、两数之和(Two Sum)
  • 018 进程控制 —— 进程等待
  • 算法训练营day18 530.二叉搜索树的最小绝对差、501.二叉搜索树中的众数、236. 二叉树的最近公共祖先
  • B站自动回复工具(破解)