当前位置: 首页 > news >正文

20250713-`Seaborn.pairplot` 的使用注意事项

Seaborn.pairplot 的使用注意事项

sns.pairplot 是 Seaborn 中最常用、最强大的探索性数据分析(EDA)函数之一。 它在一个调用里就能同时展示:

  • 任意两两变量间的 散点图(观察关系、聚类、异常值)
  • 对角线上每个变量的 单变量分布(直方图 / KDE / 计数)
  • 类别变量 分组的 颜色映射(hue)

1. 基本语法

seaborn.pairplot(data,                 # 必需,DataFramevars=None,            # 指定列(默认全部数值列)x_vars=None, y_vars=None,  # 仅画部分组合(高级用法)hue=None,             # 按该列分组上色hue_order=None,       # hue 显示顺序palette=None,         # 调色板kind='scatter',       # 非对角线子图类型:'scatter' | 'reg' | 'kde' | 'hist'diag_kind='auto',     # 对角线:'auto' | 'hist' | 'kde' | Nonemarkers=None,         # 不同 hue 的散点形状 ['o','s','^']height=2.5,           # 单幅子图的高度(英寸inch)aspect=1,             # 宽高比(正方形)corner=False,         # 只画下三角dropna=True,          # 是否丢弃缺失值plot_kws=None,        # 传给非对角线的函数关键字(散点/回归函数)diag_kws=None,        # 传给对角线的函数关键字grid_kws=None         # 传给 PairGrid 的关键字
)

2. 参数详解 & 技巧

参数说明 & 示例
vars只画关心的列:
vars=['trip_distance', 'fare_amount', 'tip']
hue按类别上色:
hue='pickup_cluster'
kind关系图类型:
kind='reg' → 加回归线
kind='kde' → 二维核密度
diag_kind对角线:
diag_kind='hist'(直方图)
diag_kind='kde'(密度曲线)
corner=True只画下三角,节省空间
height / aspect控制整张图大小:
height=3, aspect=1.2
plot_kws传给散点图:
plot_kws={'alpha':0.4, 's':20}
diag_kws传给直方图:
diag_kws={'bins':30, 'color':'skyblue'}
markers不同 hue 的形状:
markers=['o','s','D']

3. 最常见用法示例

准备数据:

test_cols = ['medallion', 'hack_license', 'trip_time_in_mins', 'trip_distance', 'total_amount', 'pickup_dayofweek']
df = time_bins_data[test_cols].sample(frac=0.0001)  # 从数据集中随机抽取少量的样本(减少计算量)
df.columns
Index(['medallion', 'hack_license', 'trip_time_in_mins', 'trip_distance','total_amount', 'pickup_dayofweek'],dtype='object')

① 快速浏览所有数值特征

sns.pairplot(df)
plt.show()

在这里插入图片描述

② 只看指定列 + 按类别着色

sns.pairplot(df,vars=['trip_distance', 'total_amount', 'pickup_dayofweek'],hue='pickup_dayofweek',palette='Set2',height=3
)
plt.show()

在这里插入图片描述

此时就出现一个问题 (hue, hue) = ('pickup_dayofweek', 'pickup_dayofweek') 子图是空的。此时应该是 varshue 变量与核密度函数 kde 之间的冲突问题,可解决该问题的方法有以下三种:

需要注意的一个问题是: 当 diag_kind='auto'(默认值) 时,seaborn 会根据 是否指定了 hue 来自动决定对角线子图类型:

  • 如果 hue=None(未指定) → 对角线画 直方图 hist
  • 如果 hue=某个列名(指定了) → 对角线画 核密度估计 kde
  1. 不要指定 vars 的内容
sns.pairplot(df[['trip_distance', 'total_amount', 'pickup_dayofweek']],# vars=['trip_distance', 'total_amount', 'pickup_dayofweek'],hue='pickup_dayofweek',palette='Set2',# diag_kind='hist',height=3
)
plt.show()

在这里插入图片描述

  1. vars 中不要包含 hue 列,参见 ③

  2. 指定对角线子图的 diag_kind='hist' (前两个方法都不会统计显示 hue 列)

sns.pairplot(df,vars=['trip_distance', 'total_amount', 'pickup_dayofweek'],  hue='pickup_dayofweek',palette='Set2',diag_kind='hist',height=3
)
plt.show()

在这里插入图片描述

③ 下三角 + 回归线

sns.pairplot(df,vars=test_cols[:4],hue='pickup_dayofweek',     # 按类别分组palette='Set1',            # 颜色调色板kind='reg',          # 非对角线加回归diag_kind='hist',    # 对角线直方图corner=True,         # 只画左下
)
plt.show()

在这里插入图片描述

④ 离散类别变量的对角线

sns.pairplot(df,vars=test_cols,hue='pickup_dayofweek',     # 按类别分组palette='Set1',            # 颜色调色板plot_kws={'alpha': 0.4},     # 点透明度(提升重叠区域可读性)diag_kind='hist',   # 对角线子图用直方图展示单变量分布(kde, hist)
)
plt.show()

在这里插入图片描述

4. 返回对象 & 进一步自定义

pairplot 本质上是 PairGrid 的封装:

g = sns.pairplot(df,vars=test_cols[2:],hue='pickup_dayofweek',     # 按类别分组palette='Set1',            # 颜色调色板plot_kws={'alpha': 0.4},     # 点透明度(提升重叠区域可读性)diag_kind='hist',   # 对角线子图用直方图展示单变量分布(kde, hist)
)
g.fig.suptitle("My Pairplot", y=1.02)     # 总标题
g.set(xlim=(0, 100), ylim=(0, 100))       # 统一坐标轴范围(需要合理设置,不然有些数据可能会无法显示)
g.map_diag(sns.histplot, kde=True)         # 对角线子图用直方图展示单变量分布(kde, hist)
plt.show()
# g.savefig("pairplot.png", dpi=300, bbox_inches='tight')  # 保存

5. 常见坑 & FAQ

问题原因 & 解决
对角线空白离散变量 + KDE → 用 diag_kind='hist'
hue 列不在 vars 里把 hue 列也放进 vars 才能在对角线看到它
图太大调小 heightcorner=True
颜色太多限制 hue_order 或使用 palette

sns.pairplot = 一次函数调用,完成所有两两关系 + 分布 + 分组可视化,是 EDA 的瑞士军刀。

http://www.lryc.cn/news/586945.html

相关文章:

  • Spring Boot 安全登录系统:前后端分离实现
  • [Subtitle Edit] 语言文件管理.xml | 测试框架(VSTest) | 构建流程(MSBuild) | AppVeyor(CI/CD)
  • Augment AI 0.502.0版本深度解析:Task、Guidelines、Memory三大核心功能实战指南
  • 海豚远程控制APP:随时随地,轻松掌控手机
  • iOS高级开发工程师面试——关于优化
  • DMDIS文件到数据库
  • 基于springboot的大学公文收发管理系统
  • 求解线性规划模型最优解
  • 跨域中间件通俗理解
  • 【QT】使用QSS进行界面美化
  • 005_提示工程与工具使用
  • 用Python实现一个Windows计算器练习
  • 011_视觉能力与图像处理
  • sklearn study notes[1]
  • Linux内核高效之道:Slab分配器与task_struct缓存管理
  • 基于Leaflet调用天地图在线API的多层级地名检索实战
  • Matlab批量转换1km降水数据为tiff格式
  • Java性能优化权威指南-JVM概述和监控调优
  • [特殊字符] Python自动化办公 | 3步实现Excel数据清洗与可视化,效率提升300%
  • 技术实现、行业变革及可视化呈现角度,系统性解析AI技术(特别是模型训练平台)
  • C++每日刷题day2025.7.13
  • 查看ubuntu磁盘占用方法
  • 日记-生活随想
  • 单例模式:确保全局唯一实例
  • 芯片相关必备
  • 第三章-提示词-解锁Prompt提示词工程核销逻辑,开启高效AI交互(10/36)
  • 如何成为 PostgreSQL 中级专家
  • 图形处理算法分类、应用场景及技术解析
  • Web应用性能优化之数据库查询实战指南
  • C/C++数据结构之多维数组