当前位置: 首页 > news >正文

分类预测 | Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比

分类预测 | Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比

目录

    • 分类预测 | Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比
      • 分类效果
      • 基本介绍
      • 功能概述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现KPCA-ISSA-SVM基于核主成分分析和改进麻雀优化算法优化支持向量机分类预测(可用于故障诊断等方面)MATLAB代码,运行环境matlab2018及以上。

❶含SVM、SSA-SVM、ISSA-SVM、KPCA-ISSA-SVM,四个模型的对比。经过降维后利用改进蜣螂算法优化LSSVM参数为:sig,gamma。

❷改进策略:融合柯西变异和反向学习的改进麻雀算法可提高收敛率,促进算法寻优。

❸可出分类效果图,迭代优化图,混淆矩阵

❹代码中文注释清晰,质量极高

❺赠送数据集,可以直接运行源程序。

功能概述

Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比

代码主要功能
该代码实现了一个基于核主成分分析(KPCA)降维和麻雀搜索算法(SSA)优化的支持向量机(SVM)分类模型,主要流程包括:

数据预处理与KPCA特征降维
智能算法(SSA)优化SVM超参数
训练优化后的SVM分类器
模型性能评估与可视化分析
算法步骤与技术路线

  1. 数据预处理
    数据导入:从Excel读取数据集(数据集.xlsx)
    归一化:使用mapminmax将输入特征归一化到[0,1]区间
    矩阵转置:适配后续降维操作
  2. KPCA特征降维
    核函数:多项式核(‘poly’,阶数para=2)
    降维维度:保留8维主成分(dim=8)
    贡献率分析:可视化降维后各特征的方差贡献率
  3. 数据集划分
    分层抽样:按类别分层划分训练集(70%)和测试集(30%)
    随机打乱:randperm防止顺序偏差
    多类别支持:自动识别类别数(num_class)
  4. SSA优化SVM参数
    优化目标:最小化分类错误率(getObjValue函数)
    优化参数:SVM的惩罚系数c和核参数g
    参数范围:
    c ∈ [0.01, 1]
    g ∈ [2⁻⁵, 2⁵] ≈ [0.03125, 32]
    SSA设置:
    种群大小:8
    最大迭代次数:30
  5. SVM建模与预测
    核函数:RBF核(-t 2)
    训练:libsvmtrain使用优化后的(c,g)
    预测:对训练集/测试集进行分类预测
  6. 性能评估与可视化
    准确率计算:训练集/测试集分类正确率
    优化曲线:SSA迭代过程中的适应度变化
    预测对比图:真实值 vs 预测值对比
    混淆矩阵:分类细节可视化(需MATLAB 2018+)

创新点
降维与优化结合:KPCA降低特征维度 + SSA优化SVM参数
高效参数搜索:麻雀算法替代传统网格搜索
全流程可视化:贡献率、优化曲线、混淆矩阵一体化分析

程序设计

  • 完整程序和数据私信博主回复Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');%%  参数设置
P_train=res(:,1:end-1)';%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);%%  矩阵转置
p_train = p_train';%%  参数设置
para = 2;        % 核函数参数
dim = 8;        % 降维后维度%% 重新安排数据
res = [zes';res(:,end)']';
%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)
outdim = 1;                                  % 最后一列为输出
f_ = size(res, 2) - outdim;                  % 输入特征维度
%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  得到训练集和测试样本个数
M = size(P_train, 1);
N = size(P_test , 1);%% 数据预处理
% 数据预处理,将训练集和测试集归一化到[0,1]区间
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train',0,1);
p_test = mapminmax('apply',P_test',ps_input);
t_train = T_train;
t_test  = T_test;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.lryc.cn/news/583489.html

相关文章:

  • 【算法训练营Day10】栈与队列part2
  • 微算法科技从量子比特到多级系统,Qudits技术革新引领量子计算新时代
  • 三码合一:OneCode注解驱动的新时代编码范式
  • C++学习笔记三
  • 类模板的语法
  • Python标准库:时间与随机数全解析
  • 【面试精讲】I2C 子系统核心结构与常见问题深度解析
  • MySQL 09 普通索引和唯一索引
  • 汽车功能安全-软件单元验证 (Software Unit Verification)【用例导出方法、输出物】8
  • 装配式建筑4.0:当房子像汽车一样被“智造”
  • 解锁DevOps潜力:如何选择合适的CI/CD工作流工具
  • 北京-4年功能测试2年空窗-报培训班学测开-第四十六天
  • Spring AI Alibaba Graph使用案例多节点并行执行
  • Webpack、Vite配置技巧与CI/CD流程搭建全解析
  • CentOS7系统部署Node.js LTS V18.16.0
  • 【自动驾驶】经典LSS算法解析——深度估计
  • 佰力博科技与您浅谈低温介电材料特性及应用分析
  • 科技对生态保育的影响?
  • Oracle存储过程导出数据到Excel:全面实现方案详解
  • 专题一_双指针_三数之和
  • 【基础算法】贪心 (四) :区间问题
  • WIFI协议全解析04:从芯片角度看WiFi协议:ESP32/8266 支持了哪些?
  • SQL 视图与事务知识点详解及练习题
  • ARM汇编编程(AArch64架构)课程 - 第7章:SIMD与浮点运算
  • STIDGCN(时空交互动态图卷积网络)的原理,包括其核心模块的设计思路和工作机制 交通预测是智能交通系统中的一个重要任务
  • python+vue的企业产品订单管理系统
  • Redis:分组与设备在 Redis 中缓存存储设计
  • Redis-哨兵机制doctor环境搭建
  • CSS基础选择器、文本属性、引入方式及Chorme调试工具
  • Linux 测开:日志分析 + 定位 Bug