当前位置: 首页 > news >正文

【读代码】GLM-4.1V-Thinking:开源多模态推理模型的创新实践

一、基本介绍

1.1 项目背景

GLM-4.1V-Thinking是清华大学KEG实验室推出的新一代开源视觉语言模型,基于GLM-4-9B-0414基础模型构建。该项目通过引入"思维范式"和强化学习课程采样(RLCS)技术,显著提升了模型在复杂任务中的推理能力。其创新点包括:

  • 64k超长上下文支持:可处理长达64k token的输入序列
  • 4K分辨率处理:支持任意纵横比的图像输入
  • 多模态推理强化:在数学推理、长文本理解等18项基准测试中超越72B参数模型
  • 中英双语支持:原生支持中文和英文的混合输入

1.2 技术定位

与同类模型(如CogVLM2、Qwen-VL)相比,GLM-4.1V-Thinking实现了三大突破:

# 模型能力对比示意
models = {
http://www.lryc.cn/news/582520.html

相关文章:

  • 大模型面试:如何解决幻觉问题
  • 【python】pyserial 在windows 下卡住的bug
  • 在PPT的文本框中,解决一打字,英文双引号就变成中文了
  • 4.权重衰减(weight decay)
  • NumPy-随机数生成详解
  • 初识单例模式
  • 【网络安全】服务间身份认证与授权模式
  • 【Flutter】面试记录
  • Next.js 实战笔记 2.0:深入 App Router 高阶特性与布局解构
  • 算法训练营DAY29 第八章 贪心算法 part02
  • ubuntu 操作记录
  • Python语言+pytest框架+allure报告+log日志+yaml文件+mysql断言实现接口自动化框架
  • 机制、形式、周期、内容:算法备案抽检复审政策讲解
  • 探索下一代云存储技术:对象存储、文件存储与块存储的区别与选择
  • 光流 | 当前光流算法还存在哪些缺点及难题?
  • ReactNative【实战系列教程】我的小红书 4 -- 首页(含顶栏tab切换,横向滚动频道,频道编辑弹窗,瀑布流布局列表等)
  • 闲庭信步使用图像验证平台加速FPGA的开发:第五课——HSV转RGB的FPGA实现
  • Java连接Emqx实现订阅发布消息
  • 恒创科技:香港站群服务器做seo站群优化效果如何
  • ReactNative【实战】瀑布流布局列表(含图片自适应、点亮红心动画)
  • Rust DevOps框架管理实例
  • ffmpeg下编译tsan
  • iOS 性能测试工具全流程:主流工具实战对比与适用场景
  • cocos2dx3.x项目升级到xcode15以上的iconv与duplicate symbols报错问题
  • CSP-S模拟赛二总结(实际难度大于CSP-S)
  • 力扣 239 题:滑动窗口最大值的两种高效解法
  • Android kotlin 协程的详细使用指南
  • C++--AVL树
  • 微前端框架对比
  • (16)Java+Playwright自动化测试-iframe操作-监听事件和执行js脚本