当前位置: 首页 > news >正文

NLP自然语言处理 02 RNN及其变体

RNN模型介绍 

        RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.

        一般的单层神经网络结构组成包括输入层,隐藏层,输出层:

       

        RNN的循环机制使模型隐层上一时间步产生的结果, 能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响.

以一个用户意图识别的例子对RNN的运行过程进行简单的分析:

  • 第一步: 用户输入了"What time is it ?", 我们首先需要对它进行基本的分词, 因为RNN是按照顺序工作的, 每次只接收一个单词进行处理.
  • 第二步: 首先将单词"What"输送给RNN, 它将产生一个输出O1.
  • 第三步: 继续将单词"time"输送给RNN, 但此时RNN不仅仅利用"time"来产生输出O2, 还会使用来自上一层隐层输出O1作为输入信息.
  • 第四步: 重复这样的步骤, 直到处理完所有的单词.
  • 第五步: 最后,将最终的隐层输出O5进行处理来解析用户意图.

传统的RNN模型

        RNN结构分析

        输入有两部分, 分别是h(t-1)以及x(t), 代表上一时间步的隐层输出, 以及此时间步的输入, 它们进入RNN结构体后, 会"融合"到一起, 这种融合我们根据结构解释可知, 是将二者进行拼接, 形成新的张量[x(t), h(t-1)], 之后这个新的张量将通过一个全连接层(线性层), 该层使用tanh作为激活函数, 最终得到该时间步的输出h(t), 它将作为下一个时间步的输入和x(t+1)一起进入结构体. 以此类推. 

 其内部计算公式为:

 使用pytorch构建传统RNN模型

模拟传统rnn的实现

# -*-coding:utf-8-*-
import torch.nn as nn
import torch
def rnnbase():'''第一个参数:input_size(输入张量x的维度)第二个参数:hidden_size(隐藏层的维度, 隐藏层的神经元个数)第三个参数:num_layer(隐藏层的数量)'''rnn=nn.RNN(5,6,1)'''第一个参数:sequence_length(输入序列的长度)第二个参数:batch_size(批次的样本数量)第三个参数:input_size(输入张量的维度)'''input = torch.randn(4, 5, 5)#第一个数对应输入序列的长度,第二个数对应样本数,第三个数对应文本张量维度'''第一个参数:num_layer * num_directions(层数*网络方向)第二个参数:batch_size(批次的样本数)第三个参数:hidden_size(隐藏层的维度, 隐藏层神经元的个数)'''h0 = torch.randn(1, 5, 6)#第一个数对应层数,第二个数对应样本数,第三个数对应文本张量维度output, hn = rnn(input, h0)print(output.shape)print(hn.shape)for i in range(input.size(0)):temp = input[i, :,:].unsqueeze(0)output, h0 = rnn(temp, h0)print(output)print(h0)
if __name__ == '__main__':rnnbase()print('output--->',output.shape, output)print('hn--->',hn.shape, hn)print('rnn模型--->', rnn)

# 程序运行效果如下:
output---> torch.Size([1, 3, 6]) tensor([[[ 0.8947, -0.6040,  0.9878, -0.1070, -0.7071, -0.1434],
         [ 0.0955, -0.8216,  0.9475, -0.7593, -0.8068, -0.5549],
         [-0.1524,  0.7519, -0.1985,  0.0937,  0.2009, -0.0244]]],
       grad_fn=<StackBackward0>)

hn---> torch.Size([1, 3, 6]) tensor([[[ 0.8947, -0.6040,  0.9878, -0.1070, -0.7071, -0.1434],
         [ 0.0955, -0.8216,  0.9475, -0.7593, -0.8068, -0.5549],
         [-0.1524,  0.7519, -0.1985,  0.0937,  0.2009, -0.0244]]],
       grad_fn=<StackBackward0>)

rnn模型---> RNN(5, 6)
 

 模型中属性的值

输入层 隐藏层 输出层之间,隐藏层与隐藏层都有全连接层进行线性变换,这里只是简单介绍下各属性都代表什么

        这里的input_size每一列代表一个单词的张量表示,也就是每个单词的表示都是[1,5]的张量

        batch_size=4代表每一批有4个样本或者说4个句子,句子的长度为sequence_lenth,这里并没有表示出来

        hidden_size指的是隐藏层的维度,也就是神经元的个数

        num_layers指的是隐藏层的层数

        output_size指的是输出的维度,作为多分类任务,有多少个分类就是多少维度

 传统RNN模型的优缺点

1 传统RNN的优势
  • 由于内部结构简单, 对计算资源要求低, 相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多, 在短序列任务上性能和效果都表现优异.
2 传统RNN的缺点
  • 传统RNN在解决长序列之间的关联时, 通过实践,证明经典RNN表现很差, 原因是在进行反向传播的时候, 过长的序列导致梯度的计算异常, 发生梯度消失或爆炸.
3 梯度消失或爆炸介绍

根据反向传播算法和链式法则, 梯度的计算可以简化为以下公式

  • 其中sigmoid的导数值域是固定的, 在[0, 0.25]之间, 而一旦公式中的w也小于1, 那么通过这样的公式连乘后, 最终的梯度就会变得非常非常小, 这种现象称作梯度消失. 反之, 如果我们人为的增大w的值, 使其大于1, 那么连乘够就可能造成梯度过大, 称作梯度爆炸.

LSTM模型

LSTM(Long Short-Term Memory)也称长短时记忆结构, 它是传统RNN的变体, 与经典RNN相比能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时LSTM的结构更复杂, 它的核心结构可以分为四个部分去解析:

        遗忘门,输入门,细胞状态门,输出门

 LSTM结构分析

 

  • 遗忘门结构分析: * 与传统RNN的内部结构计算非常相似, 首先将当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接, 得到[x(t), h(t-1)]
  • 然后通过一个全连接层做变换, 最后通过sigmoid函数进行激活得到f(t)
  • 我们可以将f(t)看作是门值, 好比一扇门开合的大小程度, 门值都将作用在通过该扇门的张量, 遗忘门门值将作用的上一层的细胞状态上, 代表遗忘过去的多少信息
  • ,因为遗忘门门值是由x(t), h(t-1)计算得来的, 因此整个公式意味着根据当前时间步输入和上一个时间步隐含状态h(t-1)来决定遗忘多少上一层的细胞状态所携带的过往信息.

 

  • 输入门结构分析:
  • *我们看到输入门的计算公式有两个, 第一个就是产生输入门门值的公式, 它和遗忘门公式几乎相同, 区别只是在于它们之后要作用的目标上. 这个公式意味着输入信息有多少需要进行过滤.
  • 输入门的第二个公式是与传统RNN的内部结构计算相同. 对于LSTM来讲, 它得到的是当前的细胞状态, 而不是像经典RNN一样得到的是隐含状态.

 

  • 输出门结构分析: * 输出门部分的公式也是两个, 第一个即是计算输出门的门值, 它和遗忘门,输入门计算方式相同.
  • 第二个即是使用这个门值产生隐含状态h(t), 他将作用在更新后的细胞状态C(t)上, 并做tanh激活, 最终得到h(t)作为下一时间步输入的一部分. 整个输出门的过程, 就是为了产生隐含状态h(t).

 Bi-LSTM介绍

Bi-LSTM即双向LSTM, 它没有改变LSTM本身任何的内部结构, 只是将LSTM应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出.

 

  • Bi-LSTM结构分析: * 我们看到图中对"我爱中国"这句话或者叫这个输入序列, 进行了从左到右和从右到左两次LSTM处理, 将得到的结果张量进行了拼接作为最终输出.
  • 这种结构能够捕捉语言语法中一些特定的前置或后置特征, 增强语义关联,但是模型参数和计算复杂度也随之增加了一倍, 一般需要对语料和计算资源进行评估后决定是否使用该结构.

 

 

  • nn.LSTM类实例化对象主要参数解释: * input: 输入张量x. * h0: 初始化的隐层张量h. * c0: 初始化的细胞状态张量c.
  • nn.LSTM使用示例:
# 定义LSTM的参数含义: (input_size, hidden_size, num_layers)
# 定义输入张量的参数含义: (sequence_length, batch_size, input_size)
# 定义隐藏层初始张量和细胞初始状态张量的参数含义:
# (num_layers * num_directions, batch_size, hidden_size)>>> import torch.nn as nn
>>> import torch
>>> rnn = nn.LSTM(5, 6, 2)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(2, 3, 6)
>>> c0 = torch.randn(2, 3, 6)
>>> output, (hn, cn) = rnn(input, (h0, c0))
>>> output
tensor([[[ 0.0447, -0.0335,  0.1454,  0.0438,  0.0865,  0.0416],[ 0.0105,  0.1923,  0.5507, -0.1742,  0.1569, -0.0548],[-0.1186,  0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],grad_fn=<StackBackward>)
>>> hn
tensor([[[ 0.4647, -0.2364,  0.0645, -0.3996, -0.0500, -0.0152],[ 0.3852,  0.0704,  0.2103, -0.2524,  0.0243,  0.0477],[ 0.2571,  0.0608,  0.2322,  0.1815, -0.0513, -0.0291]],[[ 0.0447, -0.0335,  0.1454,  0.0438,  0.0865,  0.0416],[ 0.0105,  0.1923,  0.5507, -0.1742,  0.1569, -0.0548],[-0.1186,  0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],grad_fn=<StackBackward>)
>>> cn
tensor([[[ 0.8083, -0.5500,  0.1009, -0.5806, -0.0668, -0.1161],[ 0.7438,  0.0957,  0.5509, -0.7725,  0.0824,  0.0626],[ 0.3131,  0.0920,  0.8359,  0.9187, -0.4826, -0.0717]],[[ 0.1240, -0.0526,  0.3035,  0.1099,  0.5915,  0.0828],[ 0.0203,  0.8367,  0.9832, -0.4454,  0.3917, -0.1983],[-0.2976,  0.7764, -0.0074, -0.1965, -0.1343, -0.6683]]],grad_fn=<StackBackward>)

 

 GRU模型

GRU(Gated Recurrent Unit)也称门控循环单元结构, 它也是传统RNN的变体, 同LSTM一样能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时它的结构和计算要比LSTM更简单, 它的核心结构可以分为两个部分去解析:更新门和重置门

GRU的内部结构图

  • GRU的更新门和重置门结构图:

 

  • 内部结构分析:和之前分析过的LSTM中的门控一样, 首先计算更新门和重置门的门值, 分别是z(t)和r(t), 计算方法就是使用X(t)与h(t-1)拼接进行线性变换, 再经过sigmoid激活.
  • 之后重置门门值作用在了h(t-1)上, 代表控制上一时间步传来的信息有多少可以被利用.

  • 接着就是使用这个重置后的h(t-1)进行基本的RNN计算, 即与x(t)拼接进行线性变化, 经过tanh激活, 得到新的h(t).

  • 最后更新门的门值会作用在新的h(t),而1-门值会作用在h(t-1)上, 随后将两者的结果相加, 得到最终的隐含状态输出h(t), 这个过程意味着更新门有能力保留之前的结果, 当门值趋于1时, 输出就是新的h(t), 而当门值趋于0时, 输出就是上一时间步的h(t-1).

  • Bi-GRU介绍

Bi-GRU与Bi-LSTM的逻辑相同, 都是不改变其内部结构, 而是将模型应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出. 具体参见上小节中的Bi-LSTM.

 

  • nn.GRU使用示例:
  • nn.GRU类实例化对象主要参数解释: input: 输入张量x.  h0: 初始化的隐层张量h.
>>> import torch
>>> import torch.nn as nn
>>> rnn = nn.GRU(5, 6, 2)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(2, 3, 6)
>>> output, hn = rnn(input, h0)
>>> output
tensor([[[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],[-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],[-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],grad_fn=<StackBackward>)
>>> hn
tensor([[[ 0.6578, -0.4226, -0.2129, -0.3785,  0.5070,  0.4338],[-0.5072,  0.5948,  0.8083,  0.4618,  0.1629, -0.1591],[ 0.2430, -0.4981,  0.3846, -0.4252,  0.7191,  0.5420]],[[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],[-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],[-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],grad_fn=<StackBackward>)

http://www.lryc.cn/news/582346.html

相关文章:

  • 【Java面试】Https和Http的区别?以及分别的原理是什么?
  • 【应急响应】Linux 自用应急响应工具(LinuxCheckShoot)
  • 【力扣(LeetCode)】数据挖掘面试题0003: 356. 直线镜像
  • 明星AI自动化测试工具Midscene.js源码解析
  • Vidwall: 支持将 4K 视频设置为动态桌面壁纸,兼容 MP4 和 MOV 格式
  • 【保姆级图文详解】探秘 Prompt 工程:AI 交互的关键密码
  • 【Netty基础】Java原生网络编程
  • 熔断限流降级
  • [附源码+数据库+毕业论文]基于Spring+MyBatis+MySQL+Maven+jsp实现的高校实验室资源综合管理系统,推荐!
  • Spring @Conditional注解深度解析:从原理到最佳实践
  • 10.6 ChatGLM3私有数据微调实战:24小时打造高精度模型,显存直降60%
  • 【机器学习笔记 Ⅲ】4 特征选择
  • 【ARM AMBA AXI 入门 21 -- AXI partial 访问和 narrow 访问的区别】
  • 田间杂草分割实例
  • Qt的第一个程序(2)
  • JVM基础01(从入门到八股-黑马篇)
  • 微信小程序81~90
  • C++笔记之和的区别
  • 力扣 hot100 Day37
  • 回溯题解——子集【LeetCode】二进制枚举法
  • ubuntu18.04.1无法安装vscode(安装依赖无效)
  • qiankun 微前端框架子应用间通信方法详解
  • xbox one controller DSLogic 逻辑分析仪截包
  • 1.1_5_2 计算机网络的性能指标(下)
  • OpenWebUI(3)源码学习-后端models数据模型模块
  • LLVM,polly,最新测试
  • ServerAgent资源监控和nmon监控
  • 【Linux操作系统】简学深悟启示录:Linux基本指令
  • 串行接口:CAN总线
  • 2025年全国青少年信息素养大赛图形化(Scratch)编程小学低年级组初赛样题答案+解析