当前位置: 首页 > news >正文

代码随想录算法训练营第五十一天 | 309. 最佳买卖股票时机含冷冻期、714. 买卖股票的最佳时机含手续费

309. 最佳买卖股票时机含冷冻期

动规五部曲

1、确定dp数组以及下标的含义

dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

具体可以区分出如下四个状态:

  • 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
  • 不持有股票状态,这里就有两种卖出股票状态
    • 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
    • 状态三:今天卖出股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

j的状态为:

  • 0:状态一
  • 1:状态二
  • 2:状态三
  • 3:状态四

注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。 

2、确定递推公式

达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]

那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

昨天一定是持有股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

昨天卖出了股票(状态三)

dp[i][3] = dp[i - 1][2];

3、dp数组如何初始化

如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。

保持卖出股票状态(状态二),只能初始为0

今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。

4、确定遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5、举例推导dp数组

以 [1,2,3,0,2] 为例,dp数组如下:

最后结果是取 状态二,状态三,和状态四的最大值

状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。 

class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;int len = prices.size();vector<vector<int>> dp(len, vector<int>(4,0));dp[0][0] = -prices[0];for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i],dp[i - 1][1] - prices[i]));dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);dp[i][2] = dp[i - 1][0] + prices[i];dp[i][3] = dp[i - 1][2];}return max(dp[len - 1][1], max(dp[len - 1][2], dp[len - 1][3]));}
};

714. 买卖股票的最佳时机含手续费

与普通买卖股票问题一致,手续费可以放在买入股票时,也可以放在卖出股票时进行计算

本题把手续费算入买入股票时

动规五部曲:

1、确定dp数组以及下标的含义

dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

可以分为两种状态:状态一:不持有股票(j为0);状态二:持有股票(j为1)

2、确定递推公式

不持有股票状态:有两种情况

  • 昨天不持有
  • 昨天持有,今天把昨天股票卖出

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]

持有股票状态:

  • 昨天已持有
  • 昨天未持有,今天买入股票

dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i] - fee)

3、dp数组如何初始化

不持有股票 dp[0][0] = 0;

持有股票 dp[0][1] = -prices[0] - fee;

4、确定遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5、举例推导dp数组

以 prices = [1, 3, 2, 8, 4, 9], fee = 2 为例

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(2,0));dp[0][0] = 0;dp[0][1] = -prices[0] - fee;for (int i = 1; i < prices.size(); i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i] - fee);}return max(dp[prices.size() - 1][0], dp[prices.size() - 1][1]);}
};

http://www.lryc.cn/news/57802.html

相关文章:

  • 中英文拼写检测纠正开源项目使用入门 word-checker 1.1.0
  • 面试如果还不会Netty,看这篇文章就够了
  • 作为大学生,你还不会搭建chatGPT微应用吗?
  • Three.js教程:第一个3D场景
  • lua快速入门~在js基础上,知道Lua 和 Js 的不同即可
  • Linux系统【Centos7】更换源详细教程
  • 金三银四求职季来了!分享几道最常见的app面试题,帮助您更好准备面试求职!
  • Java集合——List接口学习总结
  • 低代码(三)低代码平台前端技术组件选型1.0(前端)
  • 代码随想录算法训练营第35天|860.柠檬水找零,406.根据身高重建队列,452. 用最少数量的箭引爆气球
  • C++整人代码,十分朴实但威力无穷,让你对cout怀疑人生,整死你的同学
  • 【Spring Cloud Alibaba】12.定时任务(xxl-job)
  • GDB core dump分析
  • Leetcode.111 二叉树的最小深度
  • 【RP-RV1126】SDK编译常用记录
  • 【操作系统复习】第5章 存储器管理
  • Python人工智能在气象中的实践技术应用
  • libcurl库的安装及使用说明
  • 【JAVAEE】手把手教学多线程,包教包会~
  • 基于ChatGPT API的PC端软件开发过程遇到的问题的分析
  • 啥是插入排序 ?
  • 华为OD机试题 Q2 押题【贪心的商人 or 最大利润】用 C++ 编码,速通
  • spring框架注解
  • 前端如何处理文本溢出
  • vue elementUI select下拉框设置默认值(赋值)失败
  • TensorRT创建Engine并推理engine
  • 生成式人工智能所面临的问题有哪些?
  • 代码随想录算法训练营第四十三天 | 1049. 最后一块石头的重量 II、494. 目标和、474. 一和零
  • PostCSS 让js可以处理css
  • 【C语言进阶:自定义类型详解】位段