当前位置: 首页 > news >正文

Python 数据分析与可视化 Day 10 - 数据合并与连接

✅ 今日目标

  • 理解 Pandas 中数据合并的 4 种常用方式:concatmergejoincombine
  • 掌握内连接、外连接、左连接、右连接等操作方式
  • 掌握按列对齐、按索引对齐的区别
  • 为后续数据整合、特征拼接等建模任务做准备

📚 一、concat 合并(按行/列拼接)

df1 = pd.DataFrame({"姓名": ["张三", "李四"], "成绩": [85, 90]})
df2 = pd.DataFrame({"姓名": ["王五", "赵六"], "成绩": [70, 78]})# 纵向合并(行堆叠)
df_concat_row = pd.concat([df1, df2], ignore_index=True)# 横向合并(列拼接)
df_concat_col = pd.concat([df1, df2], axis=1)

📚 二、merge 合并(按列匹配)

df_left = pd.DataFrame({"学号": [1, 2, 3],"姓名": ["张三", "李四", "王五"]
})
df_right = pd.DataFrame({"学号": [2, 3, 4],"成绩": [90, 80, 60]
})# 默认 inner join(交集)
df_inner = pd.merge(df_left, df_right, on="学号")# 左连接:保留左表所有数据
df_left_join = pd.merge(df_left, df_right, on="学号", how="left")# 外连接:并集合并,空值补 NaN
df_outer = pd.merge(df_left, df_right, on="学号", how="outer")

📚 三、join(按索引连接)

df1 = pd.DataFrame({"成绩": [85, 90]}, index=["张三", "李四"])
df2 = pd.DataFrame({"班级": ["A", "B"]}, index=["张三", "王五"])# 使用 join 合并(按 index 对齐)
df_joined = df1.join(df2, how="outer")

📚 四、combine_first(数据补全)

df1 = pd.DataFrame({"姓名": ["张三", "李四", "王五"],"成绩": [85, None, 90]
})
df2 = pd.DataFrame({"姓名": ["张三", "李四", "王五"],"成绩": [None, 88, None]
})# 用 df2 中的非空数据补全 df1
df1.set_index("姓名", inplace=True)
df2.set_index("姓名", inplace=True)
df_combined = df1.combine_first(df2)

🧪 今日练习建议

  1. 准备两个表(如学生信息表 + 成绩表),练习 merge 的不同 join 模式

  2. 构造相同索引的两个表,练习 join 的用法(按索引合并)

  3. 使用 concat 实现表格的上下或左右拼接

  4. 使用 combine_first 补全缺失值(融合多个数据源)

    import pandas as pdprint("✅ 初始化数据...")# 模拟 学生信息表
    df_students = pd.DataFrame({"学号": [1001, 1002, 1003, 1004],"姓名": ["张三", "李四", "王五", "赵六"],"性别": ["男", "女", "男", "女"]
    })# 模拟 成绩表(部分学生)
    df_scores = pd.DataFrame({"学号": [1002, 1003, 1005],"成绩": [88, 75, 92]
    })# 模拟 班级信息(姓名为索引)
    df_classes = pd.DataFrame({"班级": ["A班", "B班", "C班"]
    }, index=["张三", "李四", "王五"])# 模拟 第三方成绩补充表
    df_scores_backup = pd.DataFrame({"学号": [1001, 1002, 1003],"成绩": [85, None, 78]
    })# ========= 一、merge 合并演示 =========print("\n🔗 merge(inner join,默认):")
    df_inner = pd.merge(df_students, df_scores, on="学号", how="inner")
    print(df_inner)print("\n🔗 merge(left join):")
    df_left = pd.merge(df_students, df_scores, on="学号", how="left")
    print(df_left)print("\n🔗 merge(outer join):")
    df_outer = pd.merge(df_students, df_scores, on="学号", how="outer")
    print(df_outer)# ========= 二、concat 行列拼接 =========print("\n📚 concat 行拼接:")
    df_part1 = df_students.iloc[:2]
    df_part2 = df_students.iloc[2:]
    df_concat = pd.concat([df_part1, df_part2], ignore_index=True)
    print(df_concat)print("\n📚 concat 列拼接:")
    df_concat_col = pd.concat([df_part1.reset_index(drop=True), df_scores.head(2).reset_index(drop=True)], axis=1)
    print(df_concat_col)# ========= 三、join 按索引合并 =========print("\n🔗 join(按姓名索引):")
    df_named = df_students.set_index("姓名")
    df_joined = df_named.join(df_classes, how="left")
    print(df_joined)# ========= 四、combine_first 用于数据补全 =========print("\n🧩 combine_first(成绩补全):")
    df_score_main = df_scores.set_index("学号")
    df_score_backup = df_scores_backup.set_index("学号")
    df_combined = df_score_main.combine_first(df_score_backup)
    print(df_combined)# (可选)保存结果
    df_left.to_csv("data/merged_left.csv", index=False)
    df_combined.to_csv("data/combined_scores.csv")print("\n✅ 合并与连接示例完成,结果已输出并保存。")
    

    运行输出:

    ✅ 初始化数据...🔗 merge(inner join,默认):学号  姓名 性别  成绩
    0  1002  李四  女  88
    1  1003  王五  男  75🔗 merge(left join):学号  姓名 性别    成绩
    0  1001  张三  男   NaN
    1  1002  李四  女  88.0
    2  1003  王五  男  75.0
    3  1004  赵六  女   NaN🔗 merge(outer join):学号   姓名   性别    成绩
    0  1001   张三    男   NaN
    1  1002   李四    女  88.0
    2  1003   王五    男  75.0
    3  1004   赵六    女   NaN
    4  1005  NaN  NaN  92.0📚 concat 行拼接:学号  姓名 性别
    0  1001  张三  男
    1  1002  李四  女
    2  1003  王五  男
    3  1004  赵六  女📚 concat 列拼接:学号  姓名 性别    学号  成绩
    0  1001  张三  男  1002  88
    1  1002  李四  女  1003  75🔗 join(按姓名索引):学号 性别   班级
    姓名              
    张三  1001  男   A班
    李四  1002  女   B班
    王五  1003  男   C班
    赵六  1004  女  NaN🧩 combine_first(成绩补全):成绩
    学号        
    1001  85.0
    1002  88.0
    1003  75.0
    1005  92.0✅ 合并与连接示例完成,结果已输出并保存。
    

🧾 今日总结

方法用途特点
concat()多表拼接行/列级拼接
merge()类似 SQL join支持主键连接
join()按索引合并简洁易用
combine_first()数据补全常用于多源合并

数据整合是建模准备中的关键一环,推荐熟练掌握 mergeconcat 的灵活使用。

http://www.lryc.cn/news/576311.html

相关文章:

  • 华为云Flexus+DeepSeek征文|基于Dify构建文本/图像/视频生成工作流
  • C++虚函数详解:动态绑定机制深度解析
  • 创客匠人视角:创始人 IP 打造为何成为知识变现的核心竞争力
  • 如何在FastAPI中打造坚不可摧的Web安全防线?
  • 【C++】简单学——类和对象(下)
  • 从 AJAX 到 axios:前端与服务器通信实战指南
  • 户外人像要怎么拍 ?
  • 翻译服务器
  • 网络攻防技术
  • 机器学习框架(1)
  • 5 BERT预训练模型
  • Vue基础(18)_收集表单数据
  • 理解图像的随机噪声
  • RGB+EVS视觉融合相机:事件相机的革命性突破​
  • 华为云镜像仓库下载 selenium/standalone-chrome 镜像
  • 《红黑树实现》
  • Vue3——组件传值
  • 【音视频】H.264详细介绍及测试代码
  • Excel限制编辑:保护表格的实用功能
  • 道路交通标志检测数据集-智能地图与导航 交通监控与执法 智慧城市交通管理-2,000 张图像
  • Qt:QCustomPlot库简介
  • HarmonyOS NEXT仓颉开发语言实战案例:图片预览器
  • linux面试常考
  • Go开发工程师-Golang基础知识篇
  • pycharm Windows 版快捷键大全
  • 大数据在UI前端的应用创新研究:用户偏好的动态调整与优化
  • 前端进阶之路-从传统前端到VUE-JS(第一期-VUE-JS环境配置)(Node-JS环境配置)(Node-JS/npm换源)
  • C++ STL深度剖析:Stack、queue、deque容器适配器核心接口
  • PCL 生成任意椭球点云
  • 关于庐山派多视频层(layer)和bind_layer的应用