three.js实现3d球体树状结构布局——树状结构的实现
目录
- 系列文章
- 安装依赖
- 基本分析
- 实体类
- 场景
- 相机
- 渲染器
- 辅助线
- 环境光
- 点光源
- 球形几何体
- 球形几何体的材质
- 线几何体
- 线几何体的材质
- 物体
- 文本
- 轨道控制
- 实现效果
- 实现源码
- 参考文档
系列文章
three.js实现3d球体树状结构布局——添加入场、出场、点击放大等动画
安装依赖
npm i three three-spritetext three.meshline
three-spritetext: 用来绘制文字。THREE.TextGeometry绘制文字存在模糊问题,而且转动camera时three-spritetext不需要手动处理让文字始终面向camera。
three.meshline: 用来绘制线。THREE.LineBasicMaterial绘制线存在linewidth无效问题。
下面是此次案例版本
"three": "^0.150.1"
"three-spritetext": "^1.8.0"
"three.meshline": "^1.4.0"
import * as THREE from "three";
import { OrbitControls } from "three/examples/jsm/controls/OrbitControls";
import SpriteText from 'three-spritetext';
import { MeshLine, MeshLineMaterial } from 'three.meshline'
基本分析
如题three.js实现3d球体树状结构布局是我们此次案例要实现的目标,那我们需要的实体有球、线、文本,以及场景、相机、渲染器、辅助线、灯光等实体。下面我们按照实体一步步来实现。
实体类
场景
const createScene = () => {return new THREE.Scene();
}
相机
本例以透视投影相机PerspectiveCamera为例
const createPerspectiveCamera = ({ fov, aspect, near, far }) => {// fov — 摄像机视锥体垂直视野角度// aspect — 摄像机视锥体长宽比// near — 摄像机视锥体近端面// far — 摄像机视锥体远端面return new THREE.PerspectiveCamera(fov, aspect, near, far);
}
渲染器
const createWebGLRenderer = ({ dom, width, height }) => {// renderDom — dom// width — 渲染宽度 一般取domclientWidth// height — 渲染高度 一般取clientHeightif (width === undefined) {width = dom.clientWidth;}if (height === undefined) {height = dom.clientHeight;}const renderer = new THREE.WebGLRenderer();renderer.setSize(width, height);dom.appendChild(renderer.domElement);return renderer;
}
辅助线
const createAxesHelper = (length) => {return new THREE.AxesHelper(length)
}
环境光
const createAmbientLight = ({ color, intensity }) => {// color - (可选参数)) 十六进制光照颜色。 缺省值 0xffffff (白色)。// intensity - (可选参数) 光照强度。 缺省值 1。return new THREE.AmbientLight(color, intensity);
}
点光源
// 环境光
const createPointLight = ({ color, intensity, distance, decay }) => {// color - (可选参数)) 十六进制光照颜色。 缺省值 0xffffff (白色)。// intensity - (可选参数) 光照强度。 缺省值 1。// distance - 这个距离表示从光源到光照强度为0的位置。 当设置为0时,光永远不会消失(距离无穷大)。缺省值 0.// decay - 沿着光照距离的衰退量。缺省值 2。return new THREE.PointLight(color, intensity, distance, decay);
}
球形几何体
const createSphereGeometry = ({radius,widthSegments,heightSegments,phiStart,phiLength,thetaStart,thetaLength
}) => {/*radius — 球体半径,默认为1。widthSegments — 水平分段数(沿着经线分段),最小值为3,默认值为32。heightSegments — 垂直分段数(沿着纬线分段),最小值为2,默认值为16。phiStart — 指定水平(经线)起始角度,默认值为0。。phiLength — 指定水平(经线)扫描角度的大小,默认值为 Math.PI * 2。thetaStart — 指定垂直(纬线)起始角度,默认值为0。thetaLength — 指定垂直(纬线)扫描角度大小,默认值为 Math.PI。*/return new THREE.SphereGeometry(radius,widthSegments,heightSegments,phiStart,phiLength,thetaStart,thetaLength);
}
球形几何体的材质
当然也可使用其他材质,本例使用MeshLambertMaterial
const createMeshLambertMaterial = (data) => {return new THREE.MeshLambertMaterial(data);
}
线几何体
const createLineGeometry = (points) => {const pointsVector3 = [];for (let i = 0; i < points.length; i++) {pointsVector3.push(new THREE.Vector3(points[i].x, points[i].y, points[i].z));}const geometry = new THREE.BufferGeometry().setFromPoints(pointsVector3);const line = new MeshLine();line.setGeometry(geometry);return line
}
线几何体的材质
const createMeshLineMaterial = (data) => {return new MeshLineMaterial({lineWidth: data.linewidth,color: data.color || "white",dashArray: data.dashArray || 0,transparent: true,})
}
物体
const createMesh = (geometry, materialBasic) => {return new THREE.Mesh(geometry, materialBasic);
}
文本
const createText = ({text, size, color}) => {let textClass = new SpriteText(text, size);textClass.color = color;return textClass
}
轨道控制
const createControl = (camera, dom) => {return new OrbitControls(camera, dom);
}
实现效果
实现源码
本案例以vue3编写
<script setup>
import { onMounted, ref, onBeforeUnmount, computed, reactive } from "vue";
import * as THREE from "three";
import { OrbitControls } from "three/examples/jsm/controls/OrbitControls";
import SpriteText from "three-spritetext";
import { MeshLine, MeshLineMaterial } from "three.meshline";// 渲染dom
let treeDom = ref(null);
// 场景
const createScene = () => {return new THREE.Scene();
};
// 相机(透视投影相机)
const createPerspectiveCamera = ({ fov, aspect, near, far }) => {/* fov — 摄像机视锥体垂直视野角度aspect — 摄像机视锥体长宽比near — 摄像机视锥体近端面far — 摄像机视锥体远端面*/return new THREE.PerspectiveCamera(fov, aspect, near, far);
};
// 渲染器
const createWebGLRenderer = ({ dom, width, height }) => {/* renderDom — domwidth — 渲染宽度 一般取domclientWidthheight — 渲染高度 一般取clientHeight*/if (width === undefined) {width = dom.clientWidth;}if (height === undefined) {height = dom.clientHeight;}const renderer = new THREE.WebGLRenderer();renderer.setSize(width, height);dom.appendChild(renderer.domElement);return renderer;
};
// 辅助线
const createAxesHelper = (length) => {return new THREE.AxesHelper(length);
};
// 环境光
const createAmbientLight = ({ color, intensity }) => {// color - (可选参数)) 十六进制光照颜色。 缺省值 0xffffff (白色)。// intensity - (可选参数) 光照强度。 缺省值 1。return new THREE.AmbientLight(color, intensity);
};
// 点光
const createPointLight = ({ color, intensity, distance, decay }) => {/*color - (可选参数)) 十六进制光照颜色。 缺省值 0xffffff (白色)。intensity - (可选参数) 光照强度。 缺省值 1。distance - 这个距离表示从光源到光照强度为0的位置。 当设置为0时,光永远不会消失(距离无穷大)。缺省值 0.decay - 沿着光照距离的衰退量。缺省值 2。*/return new THREE.PointLight(color, intensity, distance, decay);
};
// 球形几何体
const createSphereGeometry = ({radius,widthSegments,heightSegments,phiStart,phiLength,thetaStart,thetaLength,
}) => {/*radius — 球体半径,默认为1。widthSegments — 水平分段数(沿着经线分段),最小值为3,默认值为32。heightSegments — 垂直分段数(沿着纬线分段),最小值为2,默认值为16。phiStart — 指定水平(经线)起始角度,默认值为0。。phiLength — 指定水平(经线)扫描角度的大小,默认值为 Math.PI * 2。thetaStart — 指定垂直(纬线)起始角度,默认值为0。thetaLength — 指定垂直(纬线)扫描角度大小,默认值为 Math.PI。*/return new THREE.SphereGeometry(radius,widthSegments,heightSegments,phiStart,phiLength,thetaStart,thetaLength);
};
// 球形几何体的材质
const createMeshLambertMaterial = (data) => {return new THREE.MeshLambertMaterial(data);
};
// 线几何体
const createLineGeometry = (points) => {const pointsVector3 = [];for (let i = 0; i < points.length; i++) {pointsVector3.push(new THREE.Vector3(points[i].x, points[i].y, points[i].z));}const geometry = new THREE.BufferGeometry().setFromPoints(pointsVector3);const line = new MeshLine();line.setGeometry(geometry);return line;
};
// 线几何体的材质
const createMeshLineMaterial = (data) => {return new MeshLineMaterial({lineWidth: data.linewidth,color: data.color || "white",dashArray: data.dashArray || 0,transparent: true,});
};
// 物体
const createMesh = (geometry, materialBasic) => {return new THREE.Mesh(geometry, materialBasic);
};
// 文本
const createText = ({ text, size, color }) => {let textClass = new SpriteText(text, size);textClass.color = color;return textClass;
};
// 轨道控制
const createControl = (camera, dom) => {return new OrbitControls(camera, dom);
};// 3d树布局算法 灵感来源 梯形/三角形转换为圆锥
const computedDataWeight = (data) => {let weight = 0;for (let i = 0; i < data.length; i++) {let item = data[i];if (item?.children?.length) {item.weight = computedDataWeight(item.children);weight += item.weight;} else {item.weight = 1;weight += 1;}}return weight;
};
const computedArcRArr = (data, pointInterval) => {let ArcRArr = [];let ArcData = [];let ArcWeight = [];formatTreeToArcData(data, ArcData);for (let i = 0; i < ArcData.length; i++) {let item = ArcData[i];let weight = 0;for (let j = 0; j < item.length; j++) {weight += item[j].weight;}ArcWeight.push(weight);}let R = computedArcR(pointInterval, ArcWeight[0]);// 半径算法for (let i = 0; i < ArcData.length; i++) {let item = ArcData[i];if (ArcWeight[i] < ArcWeight[0]) {// 不是完全层ArcRArr.push(R);} else {if (item.length > 1) {// 完全层let DValue = 0;item.forEach((weight) => {DValue += Math.floor(weight.weight / 2);});ArcRArr.push(((ArcWeight[i] - DValue) / ArcWeight[i]) * R);} else {ArcRArr.push(0);}}}return { ArcRArr, R };
};
const formatTreeToArcData = (data, ArcData, deep = 0) => {data.forEach((element) => {if (!ArcData[deep]) {ArcData[deep] = [];}ArcData[deep].push({label: element.label,point_uuid: element.point_uuid,weight: element.weight,});if (element?.children?.length) {formatTreeToArcData(element?.children, ArcData, deep + 1);}});
};
const computedArcR = (pointInterval, points) => {if (points === 1) {return pointInterval * 2;}let arcR =pointInterval /2 /Math.cos((Math.PI / 180) * (((points - 2) * 180) / points / 2));if (arcR < pointInterval) {arcR = pointInterval * 2;}return arcR;
};
const computedTreeStyleAuto = (style, ArcRArr, R) => {if (style.yr === "auto") {style.yr = ArcRArr.length === 1 ? R : R / (ArcRArr.length - 1);}style.startPositionY =((ArcRArr.length - 1) / 2) * style.yr + style.centerXYZ[1];
};
const computedPointPosition = (data,style,ArcRArr,startAngle = 0,endAngle = Math.PI * 2,deep = 0
) => {let totalWight = 0;for (let i = 0; i < data.length; i++) {totalWight += data[i].weight;}let AngleScope = endAngle - startAngle;let curAngle = startAngle;for (let i = 0; i < data.length; i++) {let item = data[i];let ratioAngle = (item.weight / totalWight) * AngleScope;item.position = {x:Math.sin(curAngle + ratioAngle / 2) * ArcRArr[deep] +style.centerXYZ[0],y:style.startPositionY -deep * (style.yr || 0) +style.centerXYZ[1],z:Math.cos(curAngle + ratioAngle / 2) * ArcRArr[deep] +style.centerXYZ[2],};if (item?.children?.length) {computedPointPosition(item?.children,style,ArcRArr,curAngle,curAngle + ratioAngle,deep + 1);}curAngle += ratioAngle;}
};// 计算camera初始位置
const computedCameraStyle = (style, dom, treeStyle, R) => {if (style.position === "auto") {style.position = {x: 0,y: treeStyle.yr * 1.5,z: R * 3,};}if (style.data === "auto") {style.data = {fov: 45,aspect: dom.clientWidth / dom.clientHeight,near: 0.1,far: R * R,};}if (style.lookAt === "auto") {style.lookAt = JSON.parse(JSON.stringify(treeStyle.centerXYZ));}
};const treeStyle = {centerXYZ: [0, 0, 0],yr: "auto",pointInterval: 10,
};
const cameraStyle = {position: "auto",data: "auto",lookAt: "auto",
};
const sphereMeshStyle = {geometry: {radius: 1,widthSegments: 320,heightSegments: 160,},material: {color: "#ffffff",wireframe: false, //是否将几何体渲染为线框,默认值为false(即渲染为平面多边形)},
};
const lineMeshStyle = {material: {color: "#ffffff",linewidth: 0.2,},
};
const textMeshStyle = {material: {size: 0.5,color: "#ffffff",},
};
let scene = null;
let camera = null;
let renderer = null;
const init = (rendererDom) => {let data = [{name: "顶点",children: [{name: "0",children: [{name: "0-0",children: [{name: "0-0-0",},{name: "0-0-1",children: [{name: "0-0-1-0",},],},{name: "0-0-2",},],},{name: "0-1",},{name: "0-2",children: [{name: "0-2-0",},{name: "0-2-1",},],},],},{name: "1",children: [{name: "1-0",},{name: "1-1",},{name: "1-2",children: [{name: "1-2-0",},{name: "1-2-1",},],},],},{name: "2",children: [{name: "2-0",children: [{name: "2-0-0",},{name: "2-0-1",},{name: "2-0-2",},],},{name: "2-1",children: [{name: "2-1-0",},{name: "2-1-1",},],},{name: "2-2",},],},]}];computedDataWeight(data);let { ArcRArr, R } = computedArcRArr(data, treeStyle.pointInterval);computedTreeStyleAuto(treeStyle, ArcRArr, R);computedPointPosition(data, treeStyle, ArcRArr);computedCameraStyle(cameraStyle, rendererDom, treeStyle, R);scene = createScene();camera = createPerspectiveCamera(cameraStyle.data);camera.position.set(cameraStyle.position.x,cameraStyle.position.y,cameraStyle.position.z);camera.lookAt(cameraStyle.lookAt[0],cameraStyle.lookAt[1],cameraStyle.lookAt[2]);renderer = createWebGLRenderer({dom: rendererDom,});createControl(camera, rendererDom);const axes = createAxesHelper(R);scene.add(axes);const ambientLight = createAmbientLight({ color: "#fff", intensity: 0.2 });scene.add(ambientLight);const pointLight = createPointLight({ color: "#fff", intensity: 1 });pointLight.position.set(R * 10, R * 10, R * 10);scene.add(pointLight);const sphereGeometrys = [];const textGeometrys = [];const lineGeometrys = [];initGeometrys(data, sphereGeometrys, textGeometrys, lineGeometrys);scene.add(...sphereGeometrys);scene.add(...textGeometrys);scene.add(...lineGeometrys);render();
};
const initGeometrys = (data, sphereGeometrys, textGeometrys, lineGeometrys, parentPosition) => {for (let i = 0; i < data.length; i++) {let item = data[i];const geometry = createSphereGeometry(sphereMeshStyle.geometry);const material = createMeshLambertMaterial(sphereMeshStyle.material);const mesh = createMesh(geometry, material);mesh.position.set(item.position.x, item.position.y, item.position.z);sphereGeometrys.push(mesh);const text = createText({text: item.name,size: textMeshStyle.material.size,color: textMeshStyle.material.color,});text.position.x = item.position.x;text.position.y = item.position.y + sphereMeshStyle.geometry.radius * 2;text.position.z = item.position.z;textGeometrys.push(text);if (parentPosition) {const lineGeometry = createLineGeometry([parentPosition,{ x: item.position.x, y: item.position.y, z: item.position.z },]);const lineMaterial = createMeshLineMaterial(lineMeshStyle.material);const lineMesh = createMesh(lineGeometry, lineMaterial);lineGeometrys.push(lineMesh);}if (item?.children?.length) {initGeometrys(item.children,sphereGeometrys,textGeometrys,lineGeometrys,{ x: item.position.x, y: item.position.y, z: item.position.z });}}
};
// 渲染
const render = () => {//循环调用requestAnimationFrame(render);renderer.render(scene, camera);
};onMounted(() => {let rendererDom = treeDom.value;init(rendererDom);
});
</script><template><div class="tree-new-page"><div class="tree-new" ref="treeDom"></div></div>
</template><style scoped lang="scss">
.tree-new-page {width: 100%;height: 100%;overflow: hidden;background-color: #000;position: relative;.tree-new {width: 100%;height: 100%;}
}
</style>
参考文档
three.js官方文档
three-spritetext文档
three.meshline文档