当前位置: 首页 > news >正文

编译原理—翻译方案、属性栈代码

系列文章戳这里👇

  1. 什么是上下文无关文法、最左推导和最右推导
  2. 如何判断二义文法及消除文法二义性
  3. 何时需要消除左递归
  4. 什么是句柄、什么是自上而下、自下而上分析
  5. 什么是LL(1)、LR(0)、LR(1)文法、LR分析表
  6. LR(0)、SLR(1)、LR(1)、LALR(1)文法之间的关系
  7. 编译原理第三章习题
  8. 词法分析、构建DFA、上下文无关文法、LL(1)分析、提取正规式
  9. 证明LL(1)、SLR(1)、LALR(1)文法
  10. 翻译方案、属性栈代码

编译原理—翻译方案、属性栈代码

  • 系列文章戳这里👇
  • 属性栈代码:
    • 举个栗子
  • 引入标记非终结符模拟继承属性的计算

文法如下:
S→(L)∣aL→L,S∣SS → (L) | a\\ L → L, S | S S(L)aLL,SS
(a) 写一个翻译方案,它输出每个 a 的嵌套深度。例如,对于句子 (a, (a, a)),输出的结果是 1 2 2。
文法符号S,L继承属性depth表示嵌套深度,则翻译方案如下:
S′→{S.depth=0}SS→({L.depth=S.depth}L)S→a{print(S.depth)}L→{L1.depth=L.depth,S.depth=L.depth}L1,SL→{S.depth=L.depth}S\begin{aligned} S'&→\{S.depth=0\}S\\ S&→(\{L.depth = S.depth\}L)\\ S&→a\{print(S.depth)\}\\ L&→\{L_1.depth=L.depth,S.depth=L.depth\}L_1,S\\ L&→\{S.depth=L.depth\}S \end{aligned} SSSLL{S.depth=0}S({L.depth=S.depth}L)a{print(S.depth)}{L1.depth=L.depth,S.depth=L.depth}L1,S{S.depth=L.depth}S
属性栈代码,由于 属性栈上仅能存放综合属性(后文有详细介绍),所以需要引入标记非终结符P、Q、R,及其综合属性s,继承属性i,模拟继承属性的计算,则栈代码如下:
S′→{S.depth=P.s}PSP→ϵ{P.s=0}Stack[ntop]=0S→({Q.i=S.depth,L.depth=Q.s}QL)Q→ϵ{Q.s=Q.i+1}Stack[ntop]=Stack[top−1]+1S→a{print(S.depth)}print(Stack[top−1])L→{L1.depth=L.depth,R.i=L.depth,S.depth=R.s}L1,RSR→ϵ{R.s=R.i}Stack[ntop]=Stack[top−2]L→{S.depth=L.depth}S\begin{aligned} S'&→\{S.depth=P.s\}PS\\ P&→\epsilon\{P.s=0\}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Stack[ntop]=0\\ S&→(\{Q.i=S.depth,L.depth = Q.s\}QL)\\ Q&→\epsilon\{Q.s=Q.i+1\}\ \ \ \ \ \ \ \ \ \ \ \ Stack[ntop]= Stack[top-1]+1\\ S&→a\{print(S.depth)\}\ \ \ \ \ \ \ \ \ \ print(Stack[top-1])\\ L&→\{L_1.depth=L.depth,R.i=L.depth,S.depth=R.s\}L_1,RS\\ R&→\epsilon\{R.s=R.i\}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Stack[ntop] = Stack[top-2]\\ L&→\{S.depth=L.depth\}S \end{aligned} SPSQSLRL{S.depth=P.s}PSϵ{P.s=0}                       Stack[ntop]=0({Q.i=S.depth,L.depth=Q.s}QL)ϵ{Q.s=Q.i+1}            Stack[ntop]=Stack[top1]+1a{print(S.depth)}          print(Stack[top1]){L1.depth=L.depth,R.i=L.depth,S.depth=R.s}L1,RSϵ{R.s=R.i}                   Stack[ntop]=Stack[top2]{S.depth=L.depth}S

(b) 写一个翻译方案,它打印出每个 a 在句子中是第几个字符。例如,当句子是 (a, (a, (a, a),(a)))时,打印的结果是 2 5 8 10 14。
使用综合属性out表示当前文法符号推出的字符总数,基础属性before表示该文法符号前有多少个字符,则翻译方案如下:
S′→{S.before=0}SS→{L.before=S.before}(L){S.out=L.out+2}S→a{S.out=1;print(S.before+1)}L→{L1.before=L.before,S.before=L.before+L1.out+1}L1,S{L.out=L1.out+S.out+1}L→{S.before=L.before}S{L.out=S.out}\begin{aligned} S'&→\{S.before=0\}S\\ S&→\{L.before = S.before\} \\&\ \ \ \ \ \ \ \ \ \ \ (L) \\&\ \ \ \ \ \ \ \ \ \ \ \{S.out=L.out+2\}\\ S&→a\{S.out=1;print(S.before+1)\}\\ L&→\{L_1.before=L.before, \\&\ \ \ \ \ \ \ \ \ \ \ S.before=L.before+L_1.out+1\} \\&\ \ \ \ \ \ \ \ \ \ \ L_1,S \\&\ \ \ \ \ \ \ \ \ \ \ \{L.out=L_1.out+S.out+1\}\\ L&→\{S.before=L.before\}S\{L.out=S.out\} \end{aligned} SSSLL{S.before=0}S{L.before=S.before}           (L)           {S.out=L.out+2}a{S.out=1;print(S.before+1)}{L1.before=L.before,           S.before=L.before+L1.out+1}           L1,S           {L.out=L1.out+S.out+1}{S.before=L.before}S{L.out=S.out}
同理上述翻译方案栈代码如下:
S′→{S.before=P.s}PSP→ϵ{P.s=0}Stack[ntop]=0S→({Q.i=S.before,L.before=Q.s}QL){S.out=L.out+2}Q→ϵ{Q.s=Q.i+1}Stack[ntop]=Stack[top−1]+1S→a{print(S.before)}print(Stack[top−1])L→{L1.before=L.before,R.i=L.before+L1.out+1,S.before=R.s}L1,RS{L.out=L1.out+S.out+1}Stack[ntop]=Stack[top−3]+Stack[top]+1R→ϵ{R.s=R.i}Stack[ntop]=Stack[top−2]+Stack[top−1]+1L→{S.before=L.before}S{L.out=S.out}Stack[ntop]=Stack[top]\begin{aligned} S'&→\{S.before=P.s\}PS\\ P&→\epsilon\{P.s=0\}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Stack[ntop]=0\\ S&→(\{Q.i = S.before,L.before = Q.s\} \\&\ \ \ \ \ \ \ \ \ \ \ QL) \\&\ \ \ \ \ \ \ \ \ \ \ \{S.out=L.out+2\} \\ Q&→\epsilon\{Q.s=Q.i+1\}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Stack[ntop]= Stack[top-1]+1\\ S&→a\{print(S.before)\}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ print(Stack[top-1])\\ L&→\{L_1.before=L.before, \\&\ \ \ \ \ \ \ \ \ \ \ R.i=L.before+L_1.out+1, \\&\ \ \ \ \ \ \ \ \ \ \ S.before=R.s\} \\&\ \ \ \ \ \ \ \ \ \ \ L_1,RS \\&\ \ \ \ \ \ \ \ \ \ \ \{L.out=L_1.out+S.out+1\} \ \ \ \ \ \ \ \ \ Stack[ntop]=Stack[top-3]+Stack[top]+1 \\ R&→\epsilon\{R.s=R.i\}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Stack[ntop] = Stack[top-2]+Stack[top-1]+1\\ L&→\{S.before=L.before\}S \\& \ \ \ \ \ \ \ \{L.out=S.out\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Stack[ntop]=Stack[top] \end{aligned} SPSQSLRL{S.before=P.s}PSϵ{P.s=0}                                              Stack[ntop]=0({Q.i=S.before,L.before=Q.s}           QL)           {S.out=L.out+2}ϵ{Q.s=Q.i+1}                                   Stack[ntop]=Stack[top1]+1a{print(S.before)}                               print(Stack[top1]){L1.before=L.before,           R.i=L.before+L1.out+1,           S.before=R.s}           L1,RS           {L.out=L1.out+S.out+1}         Stack[ntop]=Stack[top3]+Stack[top]+1ϵ{R.s=R.i}                                          Stack[ntop]=Stack[top2]+Stack[top1]+1{S.before=L.before}S       {L.out=S.out}                                   Stack[ntop]=Stack[top]

属性栈代码:

  • 如何在自底向上分析中计算继承属性?
    • 属性栈上仅能存放综合属性
    • 分析栈中符号的继承属性
      • 属性copy规则
        如果,A→XYA→XYAXY,有语义规则Y.i:=X.sY.i := X.sY.i:=X.s
        翻译方案可写为:
        A→X{Y.i:=X.s}YA → X \{ Y.i := X.s \} YAX{Y.i:=X.s}Y
    • 从句柄下面取继承属性! 在这里插入图片描述

举个栗子

有如下文法与翻译方案

 D→T { L.in := T.type }  L 			T→int { T.type := integer }T→real	{ T.type := real }L→ { L1.in := L.in }L1 , id {addtype(id.entry, L.in) }L→id { addtype(id.entry, L.in) }

对于输入串:int p,q,r 分析过程如下:

![在这里插入图片描述](https://img-blog.csdnimg.cn/c10261d903ac4b72a199dc6df3755419.png

在这里插入图片描述

引入标记非终结符模拟继承属性的计算

在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/5574.html

相关文章:

  • 链表
  • CSS 样式优先级
  • SpingMVC获取请求参数
  • 微搭使用笔记(二)微搭低代码平台介绍及基础使用
  • CountDownLatch的定义、使用 、原理
  • 《Terraform 101 从入门到实践》 Terraform在公有云Azure上的应用
  • 别具一格,原创唯美浪漫情人节表白专辑,(复制就可用)(html5,css3,svg)表白爱心代码(3)
  • Linux 删除修改日期大于某一天的文件
  • 【算法题】1845. 座位预约管理系统
  • 【专业认知】保研北大金融 / 入职腾讯产品经理
  • OpenHarmony使用Socket实现一个UDP客户端详解
  • 使用VUE自定义组件封装部门选择功能
  • C语言基础应用(一)数据类型
  • 算法笔记(三)—— 桶排序及排序总结
  • Linux入门篇(一)
  • HTTPSHandler SSL Error
  • 基于Android的高校食堂餐厅配送系统
  • Java设计模式-02工厂模式
  • AXI-Lite 学习笔记
  • 77页智慧城市顶层设计方案
  • JavaWeb--MavenMybatis基础
  • 博客系统--测试用例编写
  • SpringCloud Alibaba
  • 地平线slam算法岗位 面试分享
  • 32、基于51单片机红外智能垃圾桶系统设计
  • PIL.Image与cv2之间的常用API汇总
  • 【csdn首发】全网爆火的从零到一落地接口自动化测试
  • 基于应力的拓扑优化的高效3D灵敏度分析代码(Matlab代码实现)
  • PMP®十万个为什么(二)
  • 【Linux】生产者消费者模型