当前位置: 首页 > news >正文

【UCB CS 61B SP24】Lecture 21: Data Structures 5: Priority Queues and Heaps 学习笔记

本文介绍了优先队列与堆,分析了最小堆的插入与删除过程,并用 Java 实现了一个通用类型的最小堆。

1. 优先队列

1.1 介绍

优先队列是一种抽象数据类型,其元素按照优先级顺序被处理。不同于普通队列的先进先出(FIFO),优先队列每次取出优先级最高(或最低)的元素。

在 Java 中,PriorityQueue 是基于(Heap)实现的,默认使用自然排序(最小堆),也可以通过自定义 Comparator 调整优先级顺序:

package CS61B.Lecture21;import java.util.Collections;
import java.util.List;
import java.util.PriorityQueue;public class PriorityQueueDemo {public static void main(String[] args) {PriorityQueue<Integer> Q = new PriorityQueue<>();  // 默认为小根堆PriorityQueue<Integer> RQ = new PriorityQueue<>(Collections.reverseOrder());  // 大根堆for (int i = 5; i > 0; i--)Q.add(i);  // 也可以用 offer() 方法System.out.println(Q);  // [1, 2, 4, 5, 3],直接输出不一定有序while (!Q.isEmpty())System.out.print(Q.poll() + " ");  // 也可以用 remove() 方法,输出 1 2 3 4 5System.out.println();RQ.addAll(List.of(8, 6, 7, 10, 9));while (RQ.peek() != null)System.out.print(RQ.remove() + " ");  // 10 9 8 7 6System.out.println();}
}

堆是一种完全二叉树,完全二叉树是指除了最后一层外,其他层的节点都必须是满的(所有可能的节点都存在),且最后一层的节点必须尽可能靠左排列。最后一层可以不满,但所有节点必须集中在左侧,中间不能有空缺。完全二叉树的高度为 ⌊ l o g n ⌋ + 1 \lfloor log n\rfloor + 1 logn+1,在相同节点数的二叉树中高度最小。

堆又分为最小堆和最大堆:

  • 最小堆:父节点的值 ≤ 子节点的值,堆顶元素为最小值;
  • 最大堆:父节点的值 ≥ 子节点的值,堆顶元素为最大值。

堆通常用数组实现,利用完全二叉树的性质能够简化父子节点索引计算,优先级最高的元素一定在堆顶,也就是索引为 0 的节点:

  • 父节点索引:(i - 1) / 2
  • 左子节点索引:2 * i + 1
  • 右子节点索引:2 * i + 2

下图是一个最小堆的示例:

在这里插入图片描述

1.2 插入

我们以最小堆为例,插入步骤如下:

  • 将新元素插入到堆的末尾(数组的最后一个位置)。
  • 上浮(Swin)调整:从新元素的位置开始,与其父节点比较。
    • 如果新元素的值小于父节点,则交换两者的位置。
    • 重复此过程,直到新元素到达根节点,或满足父节点 ≤ 当前节点的条件。

我们用图片来展示一下最小堆的插入与上浮过程,首先在末尾插入节点 3,然后判断与其父节点的大小关系,小于父节点 5,因此与父节点交换位置,然后继续判断还是小于其父节点 5,和父节点交换,最后判断该节点大于等于其父节点 1,完成上浮调整:

在这里插入图片描述

1.3 删除

还是以最小堆为例,删除步骤如下:

  • 移除堆顶元素(最小值),将其返回。
  • 将堆的最后一个元素移动到堆顶(填补空缺,同时保持完全二叉树的状态)。
  • 下沉(Sink)调整:从堆顶开始,与左右子节点中的较小者比较。
    • 如果当前节点的值大于较小子节点,则交换两者的位置。
    • 重复此过程,直到当前节点到达叶子节点,或满足父节点 ≤ 任意子节点的条件。

同样用图片展示一下最小堆的删除与下沉过程,我们在前面的最小堆上删除堆顶元素(最小值),删除后先将最后一个元素 5 移动到堆顶,然后进行下沉调整,判断 5 大于较小子节点 1,因此与 1 进行交换,接着继续判断还是小于较小子节点 3,因此与 3 进行交换,交换后已经为叶子节点,完成下沉调整:

在这里插入图片描述

可以看到堆的上浮与下沉操作最坏情况下就是遍历树的高度,因此添加和删除操作的时间复杂度最坏情况下均为 O ( l o g n ) O(log n) O(logn)。优先队列与其他数据结构的时间复杂度对比如下:

数据结构插入查看最值删除最值空间复杂度适用场景
有序数组 O ( n ) O(n) O(n) O ( 1 ) O(1) O(1) O ( n ) O(n) O(n) O ( n ) O(n) O(n)静态数据、极少插入
平衡搜索树 O ( l o g n ) O(log n) O(logn) O ( l o g n ) O(log n) O(logn) O ( l o g n ) O(log n) O(logn) O ( n ) O(n) O(n)需范围查询或全局有序
哈希表 O ( 1 ) O(1) O(1) O ( n ) O(n) O(n) O ( n ) O(n) O(n) O ( n ) O(n) O(n)快速查找某个键、无顺序要求
二叉堆 O ( l o g n ) O(log n) O(logn) O ( 1 ) O(1) O(1) O ( l o g n ) O(log n) O(logn) O ( n ) O(n) O(n)动态数据、频繁插入和提取

2. Java 实现最小堆

相信看完上面的讲解也能感觉到堆的实现并不复杂,Java 实现最小堆代码如下:

package CS61B.Lecture21;public class MinHeap<T extends Comparable<T>> {private T[] heap;private int size;private static final int DEFAULT_CAPACITY = 2;  // 默认容量public MinHeap() {this(DEFAULT_CAPACITY);}public MinHeap(int capacity) {heap = (T[]) new Comparable[capacity];size = 0;}/** 核心操作:添加 */public void add(T x) {if (size >= heap.length) resize();heap[size] = x;swim(size);  // 从末尾开始上浮size++;}/** 核心操作:删除并返回堆顶元素(最小值) */public T remove() {if (size == 0) return null;T root = heap[0];heap[0] = heap[--size];heap[size] = null;  // 清除引用,防止内存泄漏sink(0);  // 从根节点开始下沉return root;}/** 核心操作:返回堆顶元素(最小值) */public T peek() {return heap[0];}/** 获取大小 */public int size() {return size;}/** 是否为空 */public boolean isEmpty() {return size == 0;}/** 核心操作:上浮 */private void swim(int idx) {int parent = idx - 1 >> 1;while (parent >= 0 && heap[idx].compareTo(heap[parent]) < 0) {swap(idx, parent);idx = parent;parent = idx - 1 >> 1;}}/** 核心操作:下沉 */private void sink(int idx) {int left = (idx << 1) + 1;  // 左子节点的索引while (left < size) {  // 当存在子节点即当前节点还不是叶子节点时循环int right = left + 1;int minChild = left;  // 先假设最小的子节点为左子节点if (right < size && heap[right].compareTo(heap[left]) < 0) minChild = right;if (heap[idx].compareTo(heap[minChild]) <= 0) break;  // 如果已经小于等于最小子节点则完成下沉swap(idx, minChild);idx = minChild;left = (idx << 1) + 1;}}/** 将容量扩容至原来的两倍 */private void resize() {int newCapacity = heap.length * 2;T[] newHeap = (T[]) new Comparable[newCapacity];System.arraycopy(heap, 0, newHeap, 0, size);heap = newHeap;}/** 交换 heap 中两个位置的元素 */private void swap(int idx1, int idx2) {T temp = heap[idx1];heap[idx1] = heap[idx2];heap[idx2] = temp;}/** 测试 */public static void main(String[] args) {MinHeap<Integer> minHeap = new MinHeap<>();for (int i = 5; i > 0; i--) minHeap.add(i);  // 按 5 4 3 2 1 的顺序插入while (!minHeap.isEmpty())System.out.print(minHeap.remove() + " ");  // 1 2 3 4 5System.out.println();}
}
http://www.lryc.cn/news/547856.html

相关文章:

  • mapbox高阶,结合threejs(threebox)添加三维球体
  • QEMU源码全解析 —— 块设备虚拟化(1)
  • IDEA中Git版本回退终极指南:Reset与Revert双方案详解
  • Flutter 学习之旅 之 flutter 使用 flutter_screenutil 简单进行屏幕适配
  • 实验一:在Windows 10/11下配置和管理TCP/IP
  • 基于hive的电信离线用户的行为分析系统
  • Rust WebAssembly 入门教程
  • 部署RabbitMQ集群详细教程
  • 20250306JIRA添加企业微信邮箱通知
  • 代码随想录算法训练营第五十七天 | 101. 孤岛的总面积 102. 沉没孤岛 103. 水流问题 104.建造最大岛屿
  • llamafactory大模型微调教程(周易大模型案例)
  • excel 斜向拆分单元格
  • 【JAVA架构师成长之路】【JVM实战】第2集:生产环境内存飙高排查实战
  • MATLAB实现遗传算法优化风电_光伏_光热_储热优化
  • JCRQ1河马算法+四模型对比!HO-CNN-GRU-Attention系列四模型多变量时序预测
  • react中的fiber和初次渲染
  • LLM 大模型基础认知篇
  • leetcode700-二叉搜索树中的搜索
  • 《MySQL三大核心日志解析:Undo Log/Redo Log/Bin Log对比与实践指南》
  • java中实体类常见的设计模式
  • 【够用就好006】如何从零开发游戏上架steam面向AI编程的godot独立游戏制作实录001流程
  • 发行思考:全球热销榜的频繁变动
  • docker目录挂载与卷映射的区别
  • `label` 标签的 `for` 属性详解
  • 公开笔记:自然语言处理(NLP)中文文本预处理主流方法
  • 【一个月备战蓝桥算法】递归与递推
  • 算法策略深度解析与实战应用
  • 【LeetCode 热题 100】3. 无重复字符的最长子串 | python 【中等】
  • 计算机网络(1) 网络通信基础,协议介绍,通信框架
  • 在 Docker 中,无法直接将外部多个端口映射到容器内部的同一个端口