当前位置: 首页 > news >正文

算法训练(leetcode)二刷第三十八天 | 1143. 最长公共子序列、1035. 不相交的线、53. 最大子数组和、392. 判断子序列

刷题记录

  • 1143. 最长公共子序列
  • 1035. 不相交的线
  • 53. 最大子数组和
    • 动态规划
    • 优化版
  • 392. 判断子序列

1143. 最长公共子序列

leetcode题目地址

本题和300. 最长递增子序列相似(题解)。

使用动态规划:

  1. dp数组含义:dp[i][j]表示 以text1[i-1]结尾的子串A以text2[j-1]结尾的子串B 的最长公共子序列的长度。
  2. 思路同300. 最长递增子序列,每个状态更新基于前面的状态,为了防止越界,dp数组下标从1开始。
  3. 状态转移方程:
  • 当 text1[i-1] == text2[j-1] 时,dp[i][j] = dp[i-1][j-1] + 1;
  • 当 text1[i-1] == text2[j-1] 时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])
    • 这里解释一下 max(dp[i-1][j], dp[i][j-1]) 的含义:由于dp数组存储的是两个子串的最长公共子序列的长度,当两个子串的单个字符不匹配时,对应下标处的dp值要赋值为前面子串的匹配情况取最长,即dp[i-1][j]表示以text1[i-2]结尾的子串A以text2[j-1]结尾的子串B 的最长公共子序列的长度,dp[i][j-1]表示以text1[i-1]结尾的子串A以text2[j-2]结尾的子串B 的最长公共子序列的长度。

时间复杂度: O ( n ∗ m ) O(n*m) O(nm)
空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

// java
class Solution {public int longestCommonSubsequence(String text1, String text2) {int len1 = text1.length(), len2 = text2.length();char[] arr1 = text1.toCharArray(), arr2 = text2.toCharArray();int[][] dp = new int[len1+1][len2+1];for(int i = 1; i <= len1; i++){for (int j = 1; j <= len2; j++){if(arr1[i-1] == arr2[j-1]){dp[i][j] = dp[i-1][j-1] + 1;} else{dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);}// System.out.print(dp[j] + " ");}// System.out.println();}return dp[len1][len2];}
}

1035. 不相交的线

leetcode题目地址

本题其实与上一题1143. 最长公共子序列的思路完全一致。题目的描述时要求找不相交的线的最大连线数,而不相交的线其实就是找两个序列的公共子序列(不相交就是两个子序列在原序列中相对顺序一致)。

时间复杂度: O ( n ∗ m ) O(n*m) O(nm)
空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

// java
class Solution {public int maxUncrossedLines(int[] nums1, int[] nums2) {int len1 = nums1.length, len2 = nums2.length;int[][] dp = new int[len1+1][len2+1];for(int i=1; i<=len1; i++){for(int j=1; j<=len2; j++){if(nums1[i-1] == nums2[j-1]){dp[i][j] = dp[i-1][j-1] + 1;} else{dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);}}}return dp[len1][len2];}
}

53. 最大子数组和

leetcode题目地址

  • dp数组含义:
    dp[i]表示以nums[i]结尾(包含)的最大子数组和

  • 状态转移方程:
    dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);

    • dp[i-1] + nums[i]表示上一个(以nums[i-1]结尾的)子序列加入当前nums[i]
    • nums[i]表示从当前元素开始从头计算(仅包含当前元素的子序列)
  • 初始化:
    dp[i]表示以nums[i]结尾(包含)的最大子数组和,因此dp[0]初始化为nums[0],后面状态均为0.

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

动态规划

// java
class Solution {public int maxSubArray(int[] nums) {int len = nums.length;int[] dp = new int[len];dp[0] = nums[0];int result = nums[0];for(int i=1; i<len; i++){dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);result = Math.max(dp[i], result);}return result;}
}

优化版

可以看到在动规中每个状态的更新都仅依赖于前一个状态,因此无需使用数组,仅使用一个变量来记录前一个状态。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

// java
class Solution {public int maxSubArray(int[] nums) {int len = nums.length;int res = nums[0];int result = nums[0];for(int i=1; i<len; i++){res = Math.max(res + nums[i], nums[i]);result = Math.max(res, result);}return result;}
}

392. 判断子序列

leetcode题目地址

本题本质上依旧是寻找最长公共子序列。给定s和t,判断s是否是t的子序列,也就是查看s和t的最长公共子序列长度是否等于s的长度。

  • dp数组含义:
    dp[i][j]表示 以s[i-1]结尾的子串A以t[j-1]结尾的子串B 的最长公共子序列。
  • 状态转移方程:
    • 当s[i-1] == t[j-1]时,dp[i][j] = dp[i-1][j-1] + 1;
    • 当s[i-1] != t[j-1]时,dp[i][j] = dp[i][j-1];

这里不匹配时为什么是 dp[i][j] = dp[i][j-1] 而不是 dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1])
因为是在t中查找s是否是子序列,因此在不匹配时,只能删除t中的字符来查看分别以s[i-1]和t[j-2]结尾的子串的匹配情况。

而1143. 最长公共子序列不给定谁为子串,因此需要分别考虑各自为另一个字符串的子串的情况。

时间复杂度: O ( n ∗ m ) O(n*m) O(nm)
空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

// java
class Solution {public boolean isSubsequence(String s, String t) {char[] sArry = s.toCharArray();char[] tArry = t.toCharArray();int len1 = s.length(), len2 = t.length();int[][] dp = new int[len1+1][len2+1];for(int i=1; i<=len1; i++){for(int j=1; j<=len2; j++){if(sArry[i-1] == tArry[j-1]){dp[i][j] = dp[i-1][j-1] + 1;} else {dp[i][j] = dp[i][j-1];}// System.out.print(dp[i][j] + " ");}// System.out.println();}return dp[len1][len2] == len1;}
}
http://www.lryc.cn/news/544749.html

相关文章:

  • 【JavaWeb学习Day20】
  • 2024年12月中国电子学会青少年软件编程(Python)等级考试试卷(二级)真题 + 答案
  • 一、对iic类模块分析与使用
  • ROS 2机器人开发--CMakeLists.txt 文件详解
  • kan与小波,和不知所云的画图
  • 使用DeepSeek实现自动化编程:类的自动生成
  • 算法题:快速排序
  • Python的那些事第三十六篇:基于 Vega 和 Vega-Lite 的数据可视化解决方案,Altair 声明式可视化库
  • aws(学习笔记第三十课) 练习使用transit gateway
  • Phpstudy中的MySQL无法正常启动或启动后自动暂停,以及sqlilab环境搭建出现的问题解决方法
  • 【Android】安卓付款密码输入框、支付密码输入框
  • Python异常处理:从入门到精通的实用指南
  • 【AVL树】—— 我与C++的不解之缘(二十三)
  • 用大白话解释日志处理Log4j 是什么 有什么用 怎么用
  • 无人机遥控器的亮度 和 两个工作频率
  • 【Linux】命令行参数 | 环境变量(四)
  • 算法002——复写零
  • 例子 DQN + CartPole: 深入思考一下,强化学习确实是一场智能冒险之旅!
  • java 实现xxl-job定时任务自动注册到调度中心
  • esp32串口通信
  • 蓝桥杯备赛-前缀和-可获得的最小取值
  • UniApp 中封装 HTTP 请求与 Token 管理(附Demo)
  • 边缘计算+多模态感知:户外监控核心技术解析与工程部署实践!户外摄像头监控哪种好?户外摄像头监控十大品牌!格行视精灵VS海康威视VS大华横评!
  • Spring项目-抽奖系统(实操项目)(ONE)
  • STM32-智能小车项目
  • Python:字符串常见操作
  • Redis 哈希(Hash)
  • Windows对比MacOS
  • react 路由跳转的几种方式
  • 2.你有什么绝活儿?—Java能做什么?