当前位置: 首页 > news >正文

神经网络 - 激活函数(Sigmoid 型函数)

激活函数在神经元中非常重要的。为了增强网络的表示能力和学习能力,激活函数需要具备以下几点性质:

(1) 连续并可导(允许少数点上不可导)的非线性函数。可导的激活函数可以直接利用数值优化的方法来学习网络参数.

(2) 激活函数及其导函数要尽可能的简单,有利于提高网络计算效率。

(3) 激活函数的导函数的值域要在一个合适的区间内,不能太大也不能太 小,否则会影响训练的效率和稳定性。

本文介绍在神经网络中常用的激活函数之一:Sigmoid 型函数

一、Sigmoid 型函数

Sigmoid 型函数是指一类 S 型曲线函数,为两端饱和函数(关于饱和函数的概念。上一博文有介绍)。常用的 Sigmoid 型函数有 Logistic 函数Tanh 函数

对于函数 𝑓(𝑥),若 𝑥 → −∞ 时,其导数 𝑓′(𝑥) → 0,则称其为左饱和。

若 𝑥 → +∞ 时,其导数 𝑓′(𝑥) → 0,则称其为右饱和.当同时满足左、右饱和时,就称为两端饱和。

二、Logistic 函数

1、定义

2、特性说明

(1)Logistic 函数可以看成是一个“挤压”函数,把一个实数域的输入“挤压”到 (0, 1)

(2)当输入值在 0 附近时,Sigmoid 型函数近似为线性函数

(3)当输入值靠近两端 时,对输入进行抑制

(4)输入越小,越接近于 0; 输入越大,越接近于 1

和感知器使用的阶跃激活函数相比,Logistic 函数是连续可导的, 其数学性质更好。

因此装备了 Logistic 激活函数的神经元,具有以下 两点性质:

(1)其输出直接可以看作概率分布,使得神经网络可以更好地和统计 学习模型进行结合

(2)其可以看作一个软性门(Soft Gate),用来控制其他神经 元输出信息的数量

3、梯度与训练

Logistic函数的导数具有一个简单的形式:

σ′(z)=σ(z)(1−σ(z)).

这种形式在梯度下降算法中非常有用,因为它使得反向传播中梯度计算简单且高效。同时,当 zzz 处于极端值(很大或很小)时,导数趋近于0,这也会引起梯度消失问题,这一点在设计神经网络时需要注意。

Logistic函数,除了用于神经网络激活函数,还可以用于逻辑回归(这个在Logistic回归的博文中有介绍)

三、Tanh 函数 

Tanh 函数,即双曲正切函数,其数学表达式为

它将任意实数 x 映射到区间 (−1,1)。下面详细说明其性质和理解方式:

1. 基本性质

  • 输出范围
    tanh⁡(x) 的输出在 −1 到 1 之间。当 x 越大时,tanh⁡(x) 趋近于 1;当 xx 越小(即负数绝对值越大)时,tanh⁡(x) 趋近于 −1。

  • 对称性
    tanh⁡(x) 是一个奇函数(关于远点对称),即 tanh⁡(−x)=−tanh⁡(x),这意味着它关于原点对称。

  • 平滑性
    tanh⁡(x) 是连续且可微的,导数为

    这使得它在神经网络中作为激活函数时,能够提供平滑的梯度,有助于梯度传播。

2. 与其他激活函数的比较

  • Logistic 函数

         tanh(𝑥) = 2𝜎(2𝑥) − 1.(从这里可以看出两者之间的转化)

        tanh 函数可以看作放大并平移的 Logistic 函数,其值域是 (−1, 1).

        Tanh 函数的输出是零中心化的(Zero-Centered),而 Logistic 函数的输出恒大于 0。非零中心化的输出会使得其后一层的神经元的输入发生偏置偏移(Bias Shift),并进一步使得梯度下降的收敛速度变慢。Logistic 函数和 Tanh 函数的形状如下图:

  • 非线性特性
    两者都具有 S 型(sigmoidal)曲线,但由于输出范围不同,tanh⁡(x) 在处理数据时往往能更好地平衡正负信息。

3. 如何理解“附近”及应用

  • 直观理解
    当 x 较小(接近 0)时,tanh⁡(0)=0 且近似于线性函数,因为其导数 1 - tanh^2(0)=1;当 x 较大或较小时,函数逐渐饱和,输出接近 1 或 −1,说明输入的极端值不会导致输出剧烈变化。这种“饱和性”特性在神经网络中既有利于稳定输出,也可能引发梯度消失问题。

  • 实际应用
    在神经网络中,tanh⁡(x)  常作为隐藏层的激活函数,帮助模型引入非线性。由于它的输出是零中心化的,能在一定程度上帮助缓解梯度下降过程中梯度偏移的问题。

4. 举例说明

例子:在神经网络中的应用

这种激活机制帮助神经网络引入非线性特征,使得多个神经元层的组合能够逼近复杂函数。

四、Hard-Logistic 函数

1、Hard-Logistic 函数定义

以 Logistic 函数 𝜎(𝑥) 为例,其导数为 𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)).

Logistic 函数在 0 附近的一阶泰勒展开(Taylor expansion)为:

这样 Logistic 函数可以用分段函数 hard-logistic(𝑥) 来近似:

亦即:

2、Hard-Logistic 函数的形状:

 3、如何理解:

五、Hard-Tanh 函数

1、Hard-Tanh 函数定义

tanh 函数在 0 附近的一阶泰勒展开为:

这样 Tanh 函数也可以用分段函数 hard-tanh(𝑥) 来近似:

亦即:

2、Hard-Tanh 函数的形状:

 3、如何理解:

六、“hard”激活函数的应用场景和优势

  • 计算效率
    “Hard”激活函数由于只涉及简单的加减和比较运算,相比于传统的 Sigmoid 或 Tanh,可以大幅减少计算量,适合于对计算资源要求较高的场景(如移动设备、嵌入式系统)。
  • 简单性
    它们的数学表达和梯度形式非常简单,这在理论分析和工程实现中都具有优势。
  • 应用实例
    在一些深度学习网络或强化学习模型中,为了加速训练和推理,可以选择使用 Hard-Tanh 或 Hard-Logistic 作为激活函数,从而在保持性能的同时提升效率。

      总体来说,Hard-Logistic 和 Hard-Tanh 都是为了在某些场景下(如资源受限的环境或需要快速推理的应用中)替代传统平滑激活函数而设计的简化版本,虽然它们牺牲了一定的精细度,但换来了计算上的加速和实现上的简单。

七、附加:tanh(𝑥) = 2𝜎(2𝑥) − 1的推导过程

我们来学习一下双曲正切函数(tanh)和Logistic函数(σ)的推导关系,以加深大家对两个函数的理解和认识。

1. 推导过程

步骤 1:调整Logistic函数的输入和输出范围

Logistic函数的输出范围为 (0,1),而tanh的输出范围为 (−1,1)。需对Logistic函数进行线性变换:

目标形式:tanh⁡(x)=A⋅σ(Bx)+C,

其中 A、B、C 为待定系数。

步骤 2:确定参数 B(缩放输入)

将Logistic函数的输入缩放为 2x,即:

这样做的目的是使Logistic函数的斜率更陡峭,与tanh的形状更接近。

步骤 3:确定参数 A 和 C(调整输出范围)

将 σ(2x) 的输入调整后,进一步通过线性变换将其输出从 (0,1) 映射到 (−1,1):

步骤 4:代数化简

将等式右侧通分:

步骤 5:与tanh的表达式对比

2.关键推导总结

  • 输入缩放:通过将输入 x 放大为 2x,使得Logistic函数 σ(2x) 的斜率与tanh匹配。

  • 输出调整:通过线性变换 2σ(2x)−1,将输出范围从 (0,1)映射到 (−1,1)。

  • 代数恒等式:化简后与tanh的定义式完全一致。

 3.直观理解

  • 几何意义
    tanh是中心对称的S型曲线(关于原点对称),而Logistic函数是右移的S型曲线。通过缩放输入(2x)和调整输出(2σ−1),Logistic函数被“拉伸”并“平移”为tanh。

  • 参数作用

    • B=2:使Logistic函数的斜率加倍,与tanh的陡峭度一致。

    • A=2 和 C=−1:将输出范围从 (0,1)(0,1) 线性映射到 (−1,1)(−1,1)。

通过缩放Logistic函数的输入(2x)和调整输出(2σ−1),可以精确得到双曲正切函数 tanh⁡(x)。这一关系在神经网络中常用于激活函数的转换,尤其在需要中心化输出时(如循环神经网络)。

http://www.lryc.cn/news/544025.html

相关文章:

  • 阿里云 | 快速在网站上增加一个AI助手
  • 【操作系统】处理机调度
  • mysql服务层介绍,NOSQL+SQL接口(nosql介绍),语法分析器,预处理器,优化器(优化的必要性,基于成本的优化器),缓存(弊端)
  • 将DeepSeek接入vscode的N种方法
  • 【算法与数据结构】Dijkstra算法求单源最短路径问题
  • .CSV file input into contact of outlook with gibberish. .csv文件导入outlook, 出现乱码
  • StableDiffusion打包 项目迁移 项目分发 0
  • 关于Postman自动获取token
  • LSTM长短期记忆网络-原理分析
  • sql server笔记
  • AI Video Composer:基于Qwen2.5-Coder的简易开源视频创作利器
  • AI数字人开发,引领科技新潮流
  • VoIP之音频3A技术
  • [原创]openwebui解决searxng通过接口请求不成功问题
  • Jmeter聚合报告导出log文档,Jmeter聚合报告导出到CSV
  • mysqldump 参数详解
  • DeepSeek R1 简易指南:架构、本地部署和硬件要求
  • 基于 ‌MySQL 数据库‌对三级视图(用户视图、DBA视图、内部视图)的详细解释
  • [Web 信息收集] Web 信息收集 — 手动收集 IP 信息
  • 跨AWS账户共享SQS队列以实现消息传递
  • DeepSeek 202502 开源周合集
  • springai系列(二)从0开始搭建和接入azure-openai实现智能问答
  • Apache部署Vue操作手册(SSL部分)
  • 人类驾驶的人脑两种判断模式(反射和预判)-->自动驾驶两种AI模式
  • Docker和K8S中pod、services、container的介绍和关系
  • 【uniapp】在UniApp中实现持久化存储:安卓--生成写入数据为jsontxt
  • DeepSeek-R1本地部署保姆级教程
  • Python常见面试题的详解25
  • DeepSeek赋能大模型内容安全,网易易盾AIGC内容风控解决方案三大升级
  • 阿里开源正式开园文生视频、图生视频模型-通义万相 WanX2.1