当前位置: 首页 > news >正文

NLP学习记录十:多头注意力

一、单头注意力

单头注意力的大致流程如下:

① 查询编码向量、键编码向量和值编码向量分别经过自己的全连接层(Wq、Wk、Wv)后得到查询Q、键K和值V;

② 查询Q和键K经过注意力评分函数(如:缩放点积运算)得到值权重矩阵;

③ 权重矩阵与值向量相乘,得到输出结果。

 图1 单头注意力模型

 

二、多头注意力 

2.1 使用多头注意力的意义      

        看了一些对多头注意力机制解释的视频,我自己的浅显理解是:在实践中,我们会希望查询Q能够从给定内容中尽可能多地匹配到与自己相关的语义信息,从而得到更准确的预测输出。而多头注意力将查询、键和值分成不同的子空间表示(representation subspaces)(有点类似于子特征?),使得匹配过程更加细化。

2.2 代码实现

        也许直接看代码能更快地理解这个过程:

import torch
from torch import nn
from attentionScore import DotProductAttention
# 多头注意力模型
class MultiHeadAttention(nn.Module):def __init__(self, key_size, query_size, value_size, num_hiddens,num_heads, dropout, bias=False, **kwargs):super(MultiHeadAttention, self).__init__(**kwargs)self.num_heads = num_headsself.attention = DotProductAttention(dropout)self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)# queries:(batch_size,查询的个数,query_size)# keys:(batch_size,“键-值”对的个数,key_size)# values:(batch_size,“键-值”对的个数,value_size)def forward(self, queries, keys, values, valid_lens):# queries,keys,values的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)queries = self.W_q(queries)keys = self.W_k(keys)values = self.W_v(values)# 经过变换后,输出的queries,keys,values的形状:(batch_size*num_heads,查询或者“键-值”对的个数,num_hiddens/num_heads)queries = transpose_qkv(queries, self.num_heads)keys = transpose_qkv(keys, self.num_heads)values = transpose_qkv(values, self.num_heads)# valid_lens的形状:(batch_size,)或(batch_size,查询的个数)if valid_lens is not None:# 在轴0,将第一项(标量或者矢量)复制num_heads次,然后如此复制第二项,然后诸如此类。valid_lens = torch.repeat_interleave(valid_lens, repeats=self.num_heads, dim=0)# output的形状:(batch_size*num_heads,查询的个数,num_hiddens/num_heads)output = self.attention(queries, keys, values, valid_lens)# output_concat的形状:(batch_size,查询的个数,num_hiddens)output_concat = transpose_output(output, self.num_heads)return self.W_o(output_concat)
# 为了多注意力头的并行计算而变换形状
def transpose_qkv(X, num_heads):# 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)# 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,num_hiddens/num_heads)X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)# 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数, num_hiddens/num_heads)X = X.permute(0, 2, 1, 3)# 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数, num_hiddens/num_heads)return X.reshape(-1, X.shape[2], X.shape[3])
# 逆转transpose_qkv函数的操作
def transpose_output(X, num_heads):X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])X = X.permute(0, 2, 1, 3)return X.reshape(X.shape[0], X.shape[1], -1)

        可以发现,前面的处理流程和单头注意力的第①步是一样的,都是使用全连接层计算查询Q、键K、值V。但在进行点积运算之前,模型使用transpose_qkv函数对QKV进行了切割变换,下图可以帮助理解这个过程:

图2 transpose_qkv函数处理Q

图3 transpose_qkv函数处理K 

        这个过程就像是把一个整体划分为了很多小的子空间。一个不知道恰不恰当的比喻,就像是把“父母”这个词拆分成了“长辈”、“养育者”、“监护人”、“爸妈”多重含义。

        对切割变换后的QK进行缩放点积运算,过程如下图所示:

 图4 对切割变换后的Q和K进行缩放点积运算

        transpose_output后的输出结果:

图5 对值加权结果进行transpose_output变换后 

        对比单头注意力的值加权输出,原来的每个查询Q匹配到了更多的value:

图6 多头注意力与单头注意力的值加权结果对比

        整个过程就像是把一个父需求分割成不同的子需求,子需求单独与不同的子特征进行匹配,最后使得每个父需求获得了更多的语义信息。

http://www.lryc.cn/news/543641.html

相关文章:

  • 【MySql】EXPLAIN执行计划全解析:15个字段深度解读与调优指南
  • 论文笔记(七十二)Reward Centering(五)
  • Linux内核自定义协议族开发指南:理解net_device_ops、proto_ops与net_proto_family
  • SOME/IP-SD -- 协议英文原文讲解6
  • 【数据处理】COCO 数据集掩码 Run-Length Encoding (RLE) 编码转二进制掩码
  • Java中的缓存技术:Guava Cache vs Caffeine vs Redis
  • Day8 蓝桥杯acw讲解
  • 《Operating System Concepts》阅读笔记:p147-p158
  • JSON Schema 入门指南:如何定义和验证 JSON 数据结构
  • java后端开发day20--面向对象进阶(一)--static继承
  • FastJSON 默认行为:JSON.toJSONString 忽略 null 字段
  • 数据结构:基数排序(c++实现)
  • DOM 事件 HTML 标签属性速查手册
  • PhotoShop学习01
  • mongodb【实用教程】
  • C语言机试编程题
  • threeJs+vue 轻松切换几何体贴图
  • Android ObjectBox数据库使用与集成指南
  • 【HarmonyOS Next】地图使用详解(一)
  • seacmsv9注入管理员账号密码+orderby+limi
  • C#与AI的交互(以DeepSeek为例)
  • 面试八股文--数据库基础知识总结(2) MySQL
  • Failed to start The PHP FastCGI Process Manager.
  • 软件供应链安全工具链研究系列——RASP自适应威胁免疫平台(上篇)
  • Spring Boot集成MyBatis访问MySQL:从项目搭建到基础数据库查询(基础入门)
  • 一周学会Flask3 Python Web开发-Jinja2模板继承和include标签使用
  • 【2025.2.25更新】wordpress免费AI插件,文章内容、图片自动生成、视频自动生成、网站AI客服、批量采集文章,内置deepseek联网满血版
  • 待解决 leetcode71 简化路径 栈的应用
  • 数据安全_笔记系列09_人工智能(AI)与机器学习(ML)在数据安全中的深度应用
  • RocketMQ 可观测性最佳实践