当前位置: 首页 > news >正文

nv docker image 下载与使用命令备忘

1,系统需求

Requirements for GPU Simulation ¶

GPU Architectures

Volta, Turing, Ampere, Ada, Hopper

NVIDIA GPU with Compute Capability

7.0+

CUDA

11.x (Driver 470.57.02+), 12.x (Driver 525.60.13+)

Supported Systems ¶

CPU architectures

x86_64, ARM64

Operating System

Linux

Tested Distributions

CentOS 8; Debian 11, 12; Fedora 38, 39; OpenSUSE/SLED/SLES 15.5, 15.6; RHEL 8, 9; Rocky 8, 9; Ubuntu 22.04, 24.04

Python versions

3.10+

2,下载使用

量子计算模拟软件 docker image

下载docker image:

sudo docker pull nvcr.io/nvidia/quantum/cuda-quantum:cu12-0.9.0
 

创建容器的命令:

sudo docker run --gpus all -it --name cudaq_LHL_01 -v /home/hanmeimei//exe:/home/cudaq/exe nvcr.io/nvidia/quantum/cuda-quantum:cu12-0.9.0

3,vic


install gfortran/usr/bin/ld: /usr/lib/x86_64-linux-gnu/libz.a(deflate.o): relocation R_X86_64_PC32 against symbol `z_errmsg' can not be used when making a shared object; recompile with -fPIC
build libz and install
mv /urs/lib/x86-..../libz.*** backup_libz.***
git clone https://github.com/madler/zlib.git
cd zlib
git checkout v1.3.1
CFLAGS="-fPIC" ./configure 
make -j
make installlibunwind.so.1: cannot open shared object file: No such file or directorycd /usr/lib/x86_64-linux-gnu
ln -s libunwind.so.1 libunwind.so.8curl-8.5.0.tar.gz#build c++ cudaq#1.export ROOT_INSTALL=/home/cudaq/tmp1
export CUDAQ_INSTALL_PREFIX=${ROOT_INSTALL}/local/cudaq
export CUQUANTUM_INSTALL_PREFIX=${ROOT_INSTALL}/local/cuquantum
export CUTENSOR_INSTALL_PREFIX=${ROOT_INSTALL}/local/cutensor
export LLVM_INSTALL_PREFIX=${ROOT_INSTALL}/local/llvm
export BLAS_INSTALL_PREFIX=${ROOT_INSTALL}/local/blas
export ZLIB_INSTALL_PREFIX=${ROOT_INSTALL}/local/zlib
export OPENSSL_INSTALL_PREFIX=${ROOT_INSTALL}/local/openssl
export CURL_INSTALL_PREFIX=${ROOT_INSTALL}/local/curl
export AWS_INSTALL_PREFIX=${ROOT_INSTALL}/local/aws#2.
#export GCC_TOOLCHAIN=/opt/rh/gcc-toolset-11/root/usr/
#must set for GPU acceleration:export GCC_TOOLCHAIN=/usr
export CXX="${GCC_TOOLCHAIN}/bin/g++"
export CC="${GCC_TOOLCHAIN}/bin/gcc"
export CUDACXX=/usr/local/cuda/bin/nvcc
export CUDAHOSTCXX="${GCC_TOOLCHAIN}/bin/g++"如果source code locates in /home/cudaq/tmp1/cuda-quantum:git config --global --add safe.directory /home/cudaq/tmp1/cuda-quantumCUDAQ_ENABLE_STATIC_LINKING=TRUE \
CUDAQ_REQUIRE_OPENMP=TRUE \
CUDAQ_WERROR=TRUE \
CUDAQ_PYTHON_SUPPORT=OFF \
LLVM_PROJECTS='clang;flang;lld;mlir;openmp;runtimes' \
bash scripts/build_cudaq.sh -t llvm -v

2nd day:


10, 
https://curl.se/download/curl-8.5.0.tar.gz9,download openssl-3.3.1.tar.gz too slow:
cuda-quantum# vim scripts/install_prerequisites.sh ::250 Linehttps://github.com/openssl/openssl/releases/download/openssl-3.3.1/openssl-3.3.1.tar.gz8,install gfortran7, libz CFLAGS="-fPIC" ./configure && make -j && make install (sudo)/usr/bin/ld: /usr/lib/x86_64-linux-gnu/libz.a(deflate.o): relocation R_X86_64_PC32 against symbol `z_errmsg' can not be used when making a shared object; recompile with -fPIC
build libz and install
mv /urs/lib/x86-..../libz.*** backup_libz.***
git clone https://github.com/madler/zlib.git
cd zlib
git checkout v1.3.1
CFLAGS="-fPIC" ./configure 
make -j
make installcreate soft link in docker container:cd /usr/lib/x86_64-linux-gnu/
gnu# ln -s /usr/local/lib/libz.so.1.3.1 libz.so
gnu# ln -s /usr/local/lib/libz.so.1.3.1 libz.so.1
gnu# ln -s /usr/local/lib/libz.a libz.a6,libunwind.so.1
libunwind.so.1: cannot open shared object file: No such file or directorycd /usr/lib/x86_64-linux-gnu
ln -s libunwind.so.1 libunwind.so.8curl-8.5.0.tar.gz#build c++ cudaq#1.export ROOT_INSTALL=/home/cudaq/tmp1
export CUDAQ_INSTALL_PREFIX=${ROOT_INSTALL}/local/cudaq
export CUQUANTUM_INSTALL_PREFIX=${ROOT_INSTALL}/local/cuquantum
export CUTENSOR_INSTALL_PREFIX=${ROOT_INSTALL}/local/cutensor
export LLVM_INSTALL_PREFIX=${ROOT_INSTALL}/local/llvm
export BLAS_INSTALL_PREFIX=${ROOT_INSTALL}/local/blas
export ZLIB_INSTALL_PREFIX=${ROOT_INSTALL}/local/zlib
export OPENSSL_INSTALL_PREFIX=${ROOT_INSTALL}/local/openssl
export CURL_INSTALL_PREFIX=${ROOT_INSTALL}/local/curl
export AWS_INSTALL_PREFIX=${ROOT_INSTALL}/local/aws#2.
#export GCC_TOOLCHAIN=/opt/rh/gcc-toolset-11/root/usr/
#must set for GPU acceleration:export GCC_TOOLCHAIN=/usr
export CXX="${GCC_TOOLCHAIN}/bin/g++"
export CC="${GCC_TOOLCHAIN}/bin/gcc"
export CUDACXX=/usr/local/cuda/bin/nvcc
export CUDAHOSTCXX="${GCC_TOOLCHAIN}/bin/g++"如果source code locates in /home/cudaq/tmp1/cuda-quantum:git config --global --add safe.directory /home/cudaq/tmp1/cuda-quantumCUDAQ_ENABLE_STATIC_LINKING=TRUE \
CUDAQ_REQUIRE_OPENMP=TRUE \
CUDAQ_WERROR=TRUE \
CUDAQ_PYTHON_SUPPORT=OFF \
LLVM_PROJECTS='clang;flang;lld;mlir;openmp;runtimes' \
bash scripts/build_cudaq.sh -t llvm -v和它放一起哈
http://sw.iluvatar.ai/download/infra/openssl/openssl-1.1.1k.tar.gzaws-sdk-cpp:
git clone --filter=tree:0 https://github.com/aws/aws-sdk-cpp aws-sdk-cppcd aws-sdk-cpp && git checkout 1.11.454 && git submodule update --init --recursivecudaquantum:
https://developer.download.nvidia.com/compute/cuquantum/redist/cuquantum/linux-x86_64/cuquantum-linux-x86_64-24.11.0.21_cuda12-archive.tar.xzcp -r /usr/local/cuquantum /home/cudaq/tmp1/local/cuquantumlibcutensor:
scripts/configure_build.sh:90:    CUTENSOR_DOWNLOAD_URL=https://developer.download.nvidia.com/compute/cutensor/redist/libcutensor
scripts/configure_build.sh:92:    cutensor_archive=libcutensor-linux-${CUDA_ARCH_FOLDER}-${CUTENSOR_VERSION}-archive.tar.xzwget https://developer.download.nvidia.com/compute/cutensor/redist/libcutensor/linux-x86_64/libcutensor-linux-x86_64-2.0.2.5-archive.tar.xzcp -r /usr/local/cutensor /home/cudaq/tmp1/local/cutensor22, tpls/Crow
git config --global --add safe.directory /home/cudaq/tmp1/cuda-quantum/tpls/Crow

http://www.lryc.cn/news/543058.html

相关文章:

  • C#连接sql server
  • 汽车智能制造企业数字化转型SAP解决方案总结
  • vue2项目打包后js文件过大, 首次加载缓慢
  • 数据安全_笔记系列06:数据生命周期管理(存储、传输、使用、销毁)深度解析
  • 机器学习数学基础:32.斯皮尔曼等级相关
  • 【AI-39】深度学习框架包含哪些内容
  • uniapp h5支付宝支付
  • 探索YOLO技术:目标检测的高效解决方案
  • vmware虚拟机安装使用教程【视频】
  • 2025系统架构师(一考就过):案例之三:架构风格总结
  • 渗透测试实验
  • CCA社群共識聯盟正式上線
  • 京东-零售-数据研发面经【附答案】
  • python中的JSON数据格式
  • ubuntu+aarch64+dbeaver安装【亲测,避坑】
  • Java 大视界 -- 基于 Java 的大数据机器学习模型压缩与部署优化(99)
  • vscode中使用PlatformIO创建工程加载慢
  • 微信小程序数据绑定与事件处理:打造动态交互体验
  • 力扣 下一个排列
  • JavaWeb 学习笔记
  • Linux7-线程
  • 在线VS离线TTS(语音合成芯片)有哪些优势-AIOT智能语音产品方案
  • 结构型模式 - 代理模式 (Proxy Pattern)
  • el-select滚动获取下拉数据;el-select滚动加载
  • HTTP GET 请求示例
  • 简单理解Oracle中的latch
  • ubuntu新系统使用指南
  • sage-huga改进SITAN
  • DeepSeek开源周Day1:FlashMLA引爆AI推理性能革命!
  • Git add --- error: Filename too long