当前位置: 首页 > news >正文

纯新手教程:用llama.cpp本地部署DeepSeek蒸馏模型

0. 前言

llama.cpp是一个基于纯C/C++实现的高性能大语言模型推理引擎,专为优化本地及云端部署而设计。其核心目标在于通过底层硬件加速和量化技术,实现在多样化硬件平台上的高效推理,同时保持低资源占用与易用性。

最近DeepSeek太火了,就想用llama.cpp在本地部署一下试试效果,当然在个人电脑上部署满血版那是不可能的,选个小点的蒸馏模型玩一玩就好了。

1. 编译llama.cpp

首先从Github上下载llama.cpp的源码:

git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp

llama.cpp支持多种硬件平台,可根据实际的硬件配置情况选择合适的编译参数进行编译,具体可以参考文档docs/build.md

编译CPU版本

cmake -B build
cmake --build build --config Release -j 8

编译GPU版本

编译英伟达GPU版本需要先装好驱动和CUDA,然后执行下面的命令进行编译

cmake -B build -DGGML_CUDA=ON -DGGML_CUDA_ENABLE_UNIFIED_MEMORY=1
cmake --build build --config Release -j 8

编译完成后,可执行文件和库文件被存放在build/bin目录下。

2. 模型转换与量化

本文以DeepSeek R1的蒸馏模型DeepSeek-R1-Distill-Qwen-7B为例进行介绍。

2.1 模型下载与转换

首先从魔搭社区下载模型:

pip install modelscope
modelscope download --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --local_dir DeepSeek-R1-Distill-Qwen-7B

下载好的模型是以HuggingFacesafetensors格式存放的,而llama.cpp使用的是GGUF格式,因此需要先要把模型转换为GGUF格式:

# 安装python依赖库
pip install -r requirements.txt
# 转换模型
python convert_hf_to_gguf.py DeepSeek-R1-Distill-Qwen-7B/

转换成功后,在该目录下会生成一个FP16精度、GGUF格式的模型文件DeepSeek-R1-Distill-Qwen-7B-F16.gguf

2.2 模型量化

FP16精度的模型跑起来可能会有点慢,我们可以对模型进行量化以提升推理速度。

llama.cpp主要采用了分块量化(Block-wise Quantization)和K-Quantization算法来实现模型压缩与加速,其核心策略包括以下关键技术:

  1. 分块量化(Block-wise Quantization)
    该方法将权重矩阵划分为固定大小的子块(如3264元素为一组),每个子块独立进行量化。通过为每个子块分配独立的缩放因子(Scale)和零点(Zero Point),有效减少量化误差。例如,Q4_K_M表示每个权重用4比特存储,且子块内采用动态范围调整。

  2. K-Quantization(混合精度量化)
    在子块内部进一步划分更小的单元(称为“超块”),根据数值分布动态选择量化参数。例如,Q4_K_M将超块拆分为多个子单元,每个子单元使用不同位数的缩放因子(如6bit的缩放因子和4bit的量化值),通过混合精度平衡精度与压缩率。

  3. 重要性矩阵(Imatrix)优化
    通过分析模型推理过程中各层激活值的重要性,动态调整量化策略。高重要性区域保留更高精度(如FP16),低重要性区域采用激进量化(如Q2_K),从而在整体模型性能损失可控的前提下实现高效压缩。

  4. 量化类型分级策略
    提供Q2_KQ8_K等多种量化级别,其中字母后缀(如_M_S)表示优化级别:

    • Q4_K_M:中等优化级别,平衡推理速度与精度(常用推荐)。
    • Q5_K_S:轻量化级别,侧重减少内存占用

    典型场景下,Q4_K_M相比FP16模型可减少70%内存占用,推理速度提升2-3倍,同时保持95%以上的原始模型精度。实际部署时需根据硬件资源(如GPU显存容量)和任务需求(如生成文本长度)选择量化策略。

执行下面的命令可将FP16精度的模型采用Q4_K_M的量化策略进行量化:

./build/bin/llama-quantize DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-F16.gguf DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf Q4_K_M

量化完成后,模型文件由15.2G减少到4.7G

3. 运行模型

模型量化完后,我们就可以运行模型来试试效果了。llama.cpp提供了多种运行模型的方式:

命令行方式

执行下面的命令就可以在命令行与模型进行对话了:

./build/bin/llama-cli -m DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -cnv

HTTP Server方式

由于模型是以Markdown格式输出内容,因此用命令行的方式看着不太方便。llama.cpp还提供HTTP Server的方式运行,交互性要好很多。

首先在终端执行命令

./build/bin/llama-server -m DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf --port 8088

然后打开浏览器,输入地址http://127.0.0.1:8088就可以在网页上与模型进行交互了,非常方便!

http://www.lryc.cn/news/539427.html

相关文章:

  • JDK 8+新特性(Stream API、Optional、模块化等)
  • 国产编辑器EverEdit - 独门暗器:自动监视剪贴板内容
  • 贪心算法-买卖股票的最佳时机
  • 文本操作基础知识:正则表达式
  • 【Scrapy】Scrapy教程6——提取数据
  • PHP 网络编程介绍
  • 【C语言】C语言 食堂自动化管理系统(源码+数据文件)【独一无二】
  • mybatis存储过程返回list
  • 【vue】nodejs版本管理利器:nvm
  • 负载测试工具有哪些?
  • 路由基础 | 路由引入实验 | 不同路由引入方式存在的问题
  • 网络安全不分家 网络安全不涉及什么
  • 智能编程助手功能革新与价值重塑之:GitHub Copilot
  • wordpress企业官网建站的常用功能
  • 讯方·智汇云校华为官方授权培训机构
  • C语言中的文件
  • 利用分治策略优化快速排序
  • 前端工程化的具体实现细节
  • 数据分析--数据清洗
  • ✨1.HTML、CSS 和 JavaScript 是什么?
  • QT--常用对话框
  • 基于 Ollama 工具的 LLM 大语言模型如何部署,以 DeepSeek 14B 本地部署为例
  • 图的最小生成树算法: Prim算法和Kruskal算法(C++)
  • WPS的AI助手进化跟踪(灵犀+插件)
  • 我用AI做数据分析之数据清洗
  • 一周学会Flask3 Python Web开发-request请求对象与url传参
  • 【ISO 14229-1:2023 UDS诊断(ECU复位0x11服务)测试用例CAPL代码全解析④】
  • 网络技术变迁:从IPv4走向IPv6
  • DeepSeek教unity------事件管理
  • 确保设备始终处于最佳运行状态,延长设备的使用寿命,保障系统的稳定运行的智慧地产开源了